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Abstract 
Background. Several recent studies combine large private electrocardiographic (ECG) databases 
with artificial intelligence (AI-ECG) to predict patient mortality. These studies typically use a few, 
highly variable, modeling approaches. While benchmarking these approaches has historically been 
limited by a lack of public ECG datasets, this changed with the 2023 release of MIMIC-IV, containing 
795,546 ECGs from a U.S. hospital system, and the 2020 release of Code-15, containing 345,779 
ECGs collected during routine care in Brazil. 

Methods. We benchmark over 500 AI-ECG survival models predicting all-cause mortality on Code-
15 and MIMIC-IV with two neural architectures, four Deep-Survival-Analysis approaches, and 
classifiers predicting mortality at four time horizons, along with several simpler baselines. We 
extend the highest-performing approach to a dataset from Boston Children’s Hospital (BCH, 
225,379 ECGs) that is predominantly sourced from a pediatric and congenital heart disease cohort. 
Models train with and without demographics (age/sex) and evaluate across datasets. 

Findings. The best performing Deep-Survival-Analysis models trained with ECG and demographics 
yield good median Concordance Indices (Code-15: 0·82, MIMIC-IV: 0·78, BCH: 0·76) and AUPRC 
scores (median 1-yr/5-yr, Code-15: 0·07/0·15; MIMIC-IV: 0·45/0·55; BCH: 0·04/0·13) considering the 
percentage of ECGs linked to mortality ( 1-yr/5-yr, Code-15: 1·2%/3·4%; MIMIC-IV: 14·8%/24·5%; 
BCH: 0·9%/4·8%).  Contrasting with Deep-Survival-Analysis models, classifier-based AI-ECG 
models exhibit significant, site-dependent sensitivity to the choice of time horizon (median 
Pearson’s R, Code-15: 0·69, p<1E-5; MIMIC-IV: -0·80 p<1E-5). Some demographic-only models 
perform surprisingly well compared to ECG-only models (Code-15: median concordance 0·79). 
Model concordance drops 0·03-0.24 on external validation. 

Interpretation. We recommend Deep-Survival-Analysis over Classifier-Cox approaches and the 
inclusion of demographic covariates in ECG survival modeling. Comparisons to simpler 
demographic-only and baseline models is crucial. External evaluations highlight how care setting 
(e.g., acuity) agects model transferability and support fine-tuning models on site-specific data. 

Funding. Thrasher Research Fund. Boston Children’s Hospital. NIH. NLM. NICDHD. Kosten 
Innovation Fund.  

https://cavalab.org/
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Research In Context 
Evidence before this study 
Several recent studies apply artificial intelligence to electrocardiography (AIECG) to predict patient 
mortality. These studies typically train AIECG models on private datasets and report results for a 
single approach involving one ECG interpretation method and one survival analysis method (e.g. a 
convolutional neural network classifier predicting five-year mortality followed by a Cox regression).  

Among PubMed publications 2019-2024 (Criteria: (Mortality[Title] OR Death[Title]) AND (prediction 
OR risk) AND (ECG OR electrocardiography OR electrocardiogram) AND (machine learning OR deep 
learning)), 14 of 40 studies trained AIECG on more than 25,000 ECGs. These 14 studies trained on 
private datasets, employed at least 12 digerent ECG interpretation methods, and fewer than half 
explicitly compare their models to simpler baselines. This fractured approach obscures AIECG 
impact and limits the development of verifiable best practices and publicly available models. 

Added value of this study 
We build and evaluate over five hundred all-cause mortality prediction models. We benchmark two 
recently released public datasets using two ECG interpretation architectures, eight survival 
analysis methods (four Deep-Survival-Analysis methods and Cox regressions following classifiers 
predicting mortality at four digerent time horizons), along with simpler baselines. We then use the 
top performing approach to model all-cause mortality in a primarily congenital-heart-defect 
pediatric dataset. All code is released publicly. 

Implications of all the available evidence 
We recommend using Deep-Survival-Analysis and including demographic covariates in ECG 
survival modeling. Comparisons to simple baseline models (e.g. demographic-only models) are 
crucial to establishing the added value of AIECG. Training data setting (e.g., acuity) agects model 
transferability, encouraging model fine-tuning on site-specific data. 
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Background 
Electrocardiography (ECG) measures the electric activity of the heart, and abnormal 12-channel 
ECGs often indicate cardiovascular pathology and are thus a marker for disease and mortality. AI-
ECG refers to the application of AI or machine learning to ECG[1]. A common AI-ECG task is risk 
stratification, which is equivalent to predicting event occurrence (e.g. mortality or passing a 
diagnostic threshold). Several studies have recently applied AI-ECG to predict patient outcomes 
including mortality risk[1–5], ventricular hypertrophy[6], and ventricular dysfunction in both 
adults[7] and children[8]. While these studies demonstrate AI-ECG’s potential value, most use 
private data and provide results for only several modeling approaches. Consequently, there is no 
consensus on preferred modeling approach (e.g. deep learning or survival modeling algorithms).  

Most studies train AI-ECG models on large private ECG datasets (ex, ECGs: 2·4M[9], 2·3M[4]; 
1·2M[10]) or fine-tune accessible models[1,11,12]. However, verifiably evaluating digerent 
modeling approaches and creating verifiable public ECG models requires large, public ECG 
datasets linked to high-quality patient-level data. Fortunately, such data has recently become more 
available with the public releases of the MIMIC-IV dataset (800k ECGs) in 2023[13-14] and the 
Code-15 dataset (345k ECGs) in 2020[15]. See[16] for a list of public datasets pre-2020·  

Given these new datasets and the high interest in risk prediction from ECGs, a benchmark 
establishing the performance of common deep learning architectures and survival modeling 
approaches could inform future AI-ECG studies. We create and analyze such a benchmark here, 
modeling all-cause patient mortality from ECG across two architectures and eight survival 
modeling configurations on MIMIC-IV and Code-15. We then use the best-performing approach to 
model all-cause mortality on a private dataset from Boston Children's Hospital (BCH).  
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Methods 
Overview 
We first benchmark survival analysis approaches on two public ECG datasets (Code-15 and MIMIC-
IV), and then use the best performing approach to model survival in a third, private, ECG dataset 
(BCH). The dataset cohorts are described in (Table 1). We then evaluate the best performing 
approach within and across sites, comparing it to baselines 1) trained only on demographics and/or 
2) trained using gradient boosting with extracted ECG features. Lastly, we explore the impacts of 
model architecture, survival modeling approach, and inclusion of demographic data, across sites, 
classifier time horizons, and patient subgroups. 

Datasets  

Table 1 

  

Table 1. Population characteristics after data filtering. Note large digerences in event rates and 
ages. Categorical comparisons: Chi-Square test; numerical: Student’s T.  

Code-15  

Code-15[15] is an ECG dataset from the Telehealth Network of Minas Gerais, a Brazilian public 
agency providing telehealth services to Minas Gerais and Amazonian and Northeast states. Patient 
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ECGs were recorded in primary care facilities by technicians and examined remotely by a 
cardiologist. The publicly available dataset includes 345,779 ECGs collected from April to 
September of 2018. Code15 ECGs are 7-10 second signals sampled at 400Hz, centered and 
padded with zeros to total a length of 4096.  

The Code-15 Dataset provides multiple ECGs per subject and indicates the patient’s age and the 
follow-up time after the patient’s final ECG. We only use the one entry per subject that provides a 
specific follow-up time. Overall, we kept 233,647 ECGs; 1·23% / 2·07% / 3·36% / 3·61% of ECGs link 
to a mortality by year 1 / 2 / 5 / 7·67 (max).  

MIMIC-IV  
The MIMIC-IV[13] dataset includes 795,546 ECGs from 159,608 patients collected between 2008-
2019 at the Beth Israel Deaconess Medical Center in Boston, Massachusetts. Patient ECGs were 
recorded in various settings, including emergency settings, hospitals, and outpatient care centers. 
MIMIC-IV ECGs are 10 second signals sampled at 500Hz.  

MIMIC-IV tracks date-of-death with state and hospital records, and censors deaths one year after a 
final recorded hospital visit. Overall, we kept 785,035 ECGs; 14·8% / 18·4% / 24·5% / 27·6% / 27·8% 
of ECGs link to a mortality by year 1 / 2 / 5 / 10 / 12·97(max).  

For MIMIC-IV, we also explore models trained additionally with these automatic ECG measures: 
Axes – P, QRS, T; Durations – P, PQ, QRS, QT, RR. We do not adjust incorrect measures – such 
adjustments did not improve performance in early experiments. 

Boston Children’s Hospital 
The BCH[17] dataset includes 225,379 ECGS from 79,568 patients collected 1990 to 2018 at 
Boston Children’s Hospital in Boston, Massachusetts from emergency, hospital, and outpatient 
care settings. This dataset predominantly represents a pediatric congenital heart disease cohort 
and digers drastically from adult cohorts due to structural and age-dependent causes. BCH ECGs 
were resampled to the Code-15 standard. Death was tracked by an internal institutional database. 
Overall, we kept 181,976 ECGs; 0·9% / 1·5% / 3·1% / 4·8% /6·9% are associated with a mortality by 
year 1/2/5/10/33(max). 

Dataset processing 
Dataset preparation is illustrated in Figure 1. Data is limited to [Patient ID, Time-To-Event, Event, 
ECG, Age, Sex, Machine Measures (MIMIC-IV only)], and entries with missing ECG samples or Time-
To-Event are excluded. Time-To-Event is set to a minimum of 0·5 days. MIMIC-IV and BCH ECGs are 
re-sampled to 10 seconds at 400Hz and padded with 48 starting/trailing zeros for an end shape of 
4096 x 12. Code-15 and MIMIC data is split 64/16/20 into train/validation/test sets randomly by 
patient ID. BCH data is split 42/8/50 into train/validation/test by patient ID[17]. The random seed 
sets the Training/Validation split while the Test set remains fixed. Before model training or 
evaluation, all ECGs were z-score normalized per ECG channel based on the model’s training set.  
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Survival analysis  
Survival analysis builds survival functions, S(t), that denote the probability of not having 
experienced an Event by a time t. Survival analysis uses data in the form [Time-To-Event, Event], 
which denotes Event state at a follow-up time. This leverages information even when final event 
time is unknown: a device that works for two years before being lost still provides two years of 
evidence of non-breakage. ‘Censoring’ refers to not knowing event outcomes for some subjects.  

The most common survival functions are Kaplan-Meier curves which display survival over time from 
a tracked population. If the population is clustered into groups, an individual’s trajectory can be 
estimated from their cluster’s survival function. Otherwise, survival functions usually fit an 
exponential decay or Weibull function to regressors (demographics, measurements, etc.).  

The Cox proportional hazards model[18] models hazard, h(t) = d/dt (1 – S(t)), as an unknown base 
function scaled by exponential decays: h(t) = h0(t)exp(β1x1+β2x2+...+βmxm) where {x1, ..., xm} are 
regressors and {β1, ..., βm} are learned weights. The Breslow estimator is often used to fit h0(t)[19]. 
The Cox regression assumes that log-risk (β1x1+β2x2+...+βmxm) is proportional (e.g. smoker risk / non-
smoker risk = constant) and a linear function of regressors that is time-constant (there are no time-
regressor interactions).  

There are two broad approaches to survival modeling with neural networks: 

Classifier-Cox: The first approach interprets inputs into a set of values with a neural network. These 
values are then treated as generic markers to fit a Cox regression. The neural networks are typically 
trained to return a single value classifying inputs by whether an event occurs within a time horizon 
or not. This approach is simple to implement and can easily add or account for covariates in the 
Cox regression stage but must handle data censoring.  

Deep-Survival: The second approach trains neural networks with survival-specific loss functions to 
generate survival curves directly. We evaluate four such approaches from the PyCox[20] package, 
chosen for their variety and standard implementation: 

DeepSurv[21] models log-risk as a time-constant, proportional, non-linear function  
- LogisticHazard (LH)[22] models log-risk as a time-varying, non-proportional, non-linear 

function and attempts to eliminate batch size effects. 
- MTLR[23] models risk with a time-varying, non-proportional, logistic regression on a non-

linear function 
- DeepHit[24] models risk as a time-varying, non-proportional, non-linear function and allows 

for several competing risks 

AI-ECG survival models  
Several recent studies predict mortality from ECGs. These are either built completely on large, 
private, ECG banks[3,4,5,10,16,25] or are fine-tuned in the context of a particular setting or 
population[2,11,12]. Some studies use Deep-Survival[3,10,11], and some use Classifier-Cox 
approaches[4,5,25]. Most studies use a convolutional network to interpret ECG, with a slightly-
more-popular choice being the Resnet architecture from Ribeiro et al.[5,10,17,25]. 
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Benchmarking Overview 
Benchmark settings are summarized in (Table 2). We build a total of 554 models. We use two 
Convolutional Neural Network (CNN) architectures: InceptionTime[26] and a modified Resnet 
architecture[15]. For each architecture, we train four Deep-Survival models[21] and four Classifier-
Cox models where neural net classifiers predict mortality up to one, two, five, and ten-year 
horizons. Models are trained with and without demographic data and compared to models trained 
only on demographic data via XGBoost or a simple feedforward network (‘FF’). Additional model 
training and survival analysis details are in the supplement.  

We make this resource publicly available at github.com/cavalab/ecg-survival-benchmark. 

Table 2 

 

Table 2. Sweep parameters. 

Figure 1 

 

Figure 1. A diagram of the modeling process from data preparation to model evaluation 

Setting Values
Survival Analysis

Deep-Survival Models DeepHit, DeepSurv, LogisticHazard, Multi-Task Logistic Regression
Classifier-Cox Models Classifiers model mortality as binary at 1,2,5,10-yr horizons

ECG Deep Learning Architecture InceptionTime, Resnet
Demographic options None, Age + Sex, Age + Sex + ECG Machine Measure (MIMIC-IV only)*
Demographic-Only models XGBoost, Feedforward Network*
Normalization z-score per channel, based on model's training data

* Three random seeds, five everywhere else
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Neural Network Structure 
Our neural networks had three pieces: an ECG-processing piece, a demographic-processing piece 
(three feedforward-ReLU layers with output dimension 32), and a fusion piece connecting the other 
two pieces (three feedforward-ReLU layers with output dimension 128) that heads into a final linear 
layer (dimension 1 for Classifier-Cox models and DeepSurv, dimension 100 for LH, MTLR, and 
DeepHit – one per time bin). When demographic data is not included, the demographic-processing 
piece is skipped. When ECG is not included (for demographics-only baselines), the ECG piece 
returns a single dimension with a value of ‘0’, resulting in a feed-forward network. 

We benchmark two ECG-processing architectures: 
- “Resnet” is a multi-channel time series[15,25] adaptation of the original ResNet[27]. 

Architecture parameters were kept at defaults tuned to the full Code dataset. This model 
has 6·9-7·5M parameters. 

- “InceptionTime”[26] adapts AlexNet[28] by widening convolutional kernel widths and 
including channel-wise bottlenecks to control model complexity. This architecture 
performs well on many small time-series classification benchmarks and has recently been 
used in fetal heart rate monitoring[29]. Architecture parameters were kept at the original 
publication’s defaults (kernel widths 11, 21, 41). This model has 510-530k parameters.  

Measures  
Our primary metric is the Concordance Index (Concordance or C-Index). Concordance evaluates 
subject risk ordering: at the time of an event, a subject should be at a higher risk than any other 
subject still under observation; Concordance is the fraction of correctly ranked subject-subject 
comparisons.  

 

Statistics 
Unless otherwise mentioned, paired comparisons use the Wilcoxon test and unpaired 
comparisons use the Mann-Whitney test. Multiple comparisons were adjusted for with Benjamini-
Hochberg corrections at the 5% false discovery rate level. 
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Results 
Public Dataset Modeling Results 
Concordance indices across model sweeps are shown in (Figure 2). Concordances for the top 
performing architecture, ResNet LogisticHazard, which ranked 2nd in Code-15 and 1st in MIMIC-IV, 
were (median; with Demographics -  Code-15: 0·82, MIMIC-IV: 0·78; without Demographics -  Code-
15: 0·80, MIMIC-IV: 0·77). Top-performing demographic-only models yield Concordances of 0·79 for 
Code-15 (FF Cla-2) and 0·66 for MIMIC-IV (FF Cla-2). Top-performing MIMIC-IV demographics-and-
machine-measure models yielded Concordances of 0·73 (XGB Cla-1). The ResNet LogisticHazard 
ECG-and-demographics-and-machine-measure MIMIC-IV model yielded Concordance 0·77. 

 

Figure 2. Model concordances across data, demographic inclusion, architecture, and survival 
modeling approaches. ‘+’: model trained with age/sex. Cla-H marks H-year horizon Classifier-Cox 

models. N=5 per configuration. Best non-CNN is a MIMIC-IV XGB Cla-1 model trained on 
demographics and automatic ECG machine measures (e.g. QRS). 

Resnet Models, overall, show statistically higher Concordance than InceptionTime in Code-15 
cases (median; ECG-only: 0·79 vs 0·78, p=1.32E-5, with demographics: 0·818 vs 0·816, p=2.08E-2) 
(Supplemental Table 1). This is expected as Resnet architectures are tuned to this case.  

Deep Survival models, overall, show statistically higher Concordance than Classifier-Cox models 
for ECG-based models with both datasets whether demographics are included (median; Code-15: 
0·821 vs 0·813, p<1E-5; MIMIC-IV: 0·774 vs 0·769, p=9.00E-4) or not (median; Code-15: 0·792 vs 
0·773, p<1E-5; MIMIC-IV: 0·763 vs 0·758, p=5,88E-5) (Supplemental table 1). In demographic-only 
MIMIC models, Classifier-Cox approaches show statistically, but not substantively, higher 
performance than Deep Survival models (0.656 vs 0.654, p<1E-5); notably, these Deep-Survival 
models did not include the winning XBG approach. 

The choice of time horizon for training Classifier-Cox models significantly correlates with 
Concordance for both datasets, whether demographics are included (medians; Code-15: 0·35, 
p=0·025; MIMIC-IV: -0·84, p<1E-5) or not (median; Code-15: 0·69, p<1E-5; MIMIC-IV: -0·80 p<1E-5) 
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(Supplemental Table 2). The direction of this egect is positive in Code-15 and negative in MIMIC-IV 
(Figure 2), highlighting the digiculty of choosing an appropriate value that is generally applicable. 

Models incorporating ECG and Demographics show significantly higher Concordance than ECG-
only models (median; Code-15: 0·817 vs 0·783, p<1E-5; MIMIC-IV: 0·772 vs 0·760, p<1E-5) 
(Supplemental Table 3). 

Further analysis of time-censored and per-patient Concordance, as well as AUROC and AUPRC, is 
in Supplements. The most concordant approach, ResNet LogisticHazard, shows higher AUPRC 
than demographic-only models or chance. We highlight median AUPRC at 1-year (ECG+Age+Sex / 
Age+Sex / Chance %; Code-15: 0·07 / 0·04 / 1·2%; MIMIC-IV: 0·45 / 0·25 / 14·8%; BCH: 0·04 / 0·02 / 
0·9%) and 5-years (ECG+Age+Sex / Age+Sex / Chance %; Code-15: 0·14 / 0·11/ 3·4%; MIMIC-IV: 
0·55 / 0·42 / 24·5%; BCH: 0·13 / 0·07 / 4·8%).  

We compare Kaplan-Meier curves for BCH and Code-15 to mean predicted population survival from 
ECG-only models in Supplemental Figure 1, confirming that model estimates generally follow the 
data. We also investigate model explainability with a media-waveform analysis[8]  in Supplemental 
Figure 2; this highlighted dampened QRS activity, indicative of LV dysfunction, in high-risk patients. 

External Validation 
We evaluated model ability to generalize to new sites in Table 3. Models generally perform best on 
their respective test sets, as expected. Models trained on BCH and MIMIC-IV transferred poorly to 
Code-15, exemplified by a 0.24 drop in BCH model concordance. Demographic-only survival 
models provide a strong baseline for the Code-15 cohort, even when trained externally; e.g., the 
best demographic-only model trained on MIMIC-IV shows a concordance of 0·79 on Code-15, 
which matches a Code-15-trained, ECG-only model. All Code-15 and MIMIC-IV ECG models 
perform better than demographic-only models on BCH (0·73/0·75, respectively), and transfer the 
best overall between sites. We further evaluated model performance on patient subgroups in 
Supplemental Figure 3, but did not find that model performance digerentials between sites was 
sugiciently explained by digerences in age and sex among cohorts.  

 

Test Data Training Data Median 25% 75% Median 25% 75% Median 25% 75% Approach
BCH 0.77 0.76 0.77 0.76 0.76 0.76 0.67 0.66 0.67 FF DeepHit

Code15 0.74 0.74 0.74 0.73 0.73 0.74 0.65 0.65 0.65
MIMICIV 0.71 0.69 0.71 0.75 0.73 0.75 0.65 0.65 0.65

BCH 0.53 0.51 0.54 0.54 0.54 0.55 0.77 0.77 0.78
Code15 0.80 0.79 0.81 0.82 0.82 0.83 0.79 0.79 0.79 FF CLA-2
MIMICIV 0.62 0.62 0.65 0.70 0.68 0.70 0.79 0.79 0.79

BCH 0.65 0.64 0.66 0.65 0.62 0.65 0.65 0.65 0.65
Code15 0.70 0.68 0.70 0.71 0.70 0.71 0.66 0.66 0.66

MIMICIV* 0.77 0.76 0.77 0.78 0.78 0.78 0.66 0.66 0.66 FF CLA-2

** Best  by median concordance on Training Data's corresponding Test Set (ex: BCH/BCH)

ECG

BCH

Code15

MIMICIV

ECG + Age/Sex
Concordance 
(higher better)

ResNet LogisticHazard
Best** Non-ECG model

* with Age/Sex/Machine measures: ResNet LogisticHazard: 0.78; 0.73 with XGB CLA-1
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Table 3. ‘ResNet LogisticHazard’ ranked 1st for ‘ECG + Age/Sex’ in MIMIC-IV and 2nd in Code-15 and 
was used for BCH survival models. These models were then evaluated on all datasets. Color-
coding is per Test dataset; Red: lowest, Blue: highest, White: local Non-ECG. FF- feedforward.  

Discussion and Conclusions 
This work is the first to comprehensively benchmark survival modeling approaches in all-cause 
mortality prediction on the public Code-15 and MIMIC-IV datasets, and evaluate the resultant 
models in a pediatric setting. We provide verifiable results and baselines that inform future model 
development (ECG-processing approaches, survival analysis approaches). We also release our 
code, which can be adapted to evaluate new modeling approaches or used to train AI-ECG survival-
analysis models. While classification-based mortality modeling allows for some patient risk 
stratification, survival-analysis modeling is broader in that it models event occurrence (e.g. 
diagnostic threshold crossing) from data in the [time-to-event, event] format. Applied carefully to a 
patient subgroup, this could inform decisions on patient care or logistics (e.g. scheduling) in finer 
detail. 

Demographic-Only models 
Studies rarely compare AI-ECG to simpler models such as demographic-only models. AI-ECG’s 
value depends on its favorable performance against these competitors. Here, we find that this 
value is sometimes small and varies substantially with dataset, suggesting ECG-based models may 
add more value in acute settings (BCH, MIMIC-IV) than in out-patient settings (Code-15).  

Model Generalizability 
Models trained on MIMIC-IV and Code-15 transferred better to BCH than vice versa. This digerence 
is not explained by age or sex related performance digerences (Supplemental Figure 3), and isn’t 
attributable purely to digerences in mortality rates (4/28/7% for Code-15/MIMIC-IV/BCH, 
respectively, Table 1). We conjecture these digerences arise from multiple factors related to the 
care setting and cohort digerences between these sites. Whereas future work may tease apart 
additional explanations, the results suggest that site-specific models are likely to perform 
significantly better than an externally trained AI-ECG model; in some cases (Code-15), even simple 
demographic models appear to transfer better.   

Comparisons to past work 
Our results match past studies which predict mortality at the one-year mark (0·81-0·85 
Concordance)[4,5] and five-year mark (0·78-0·83 Concordance)[1,5]. Additionally, our ResNet 
DeepHit ECG-only MIMIC-IV results (0·769 Concordance) match a recent study (0·775 
Concordance) that trained a ResNet DeepHit model, AIRE[10], on 1.2M ECGs from Beth-Israel 
Deaconess Medical Center in Boston, MA. We expect this dataset to substantially overlap with 
MIMIC-IV.   

Past work reports insubstantial performance drops across similar cohorts[1] and AIRE[10] reports 
Concordance drops of 0·01-0·13 on digerent cohorts. Although AIRE’s 0·762 Concordance on the 
full Code dataset improves on our ECG-only CNN models’ 0·62, both are lower than a Code-15 
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demographics-only model (0·79). This again suggests that models should be tested against, and 
calibrated to, local baselines.  

On survival modeling approaches 
We recommend Deep-Survival approaches since they perform more reliably than Classifier-Cox 
models and limit data censoring problems. 

Performance. On average, Deep-Survival models increase Concordance by 0·005-0·02 over 
Classifier-Cox models. For Code-15, this is substantial when comparing AI-ECG models to 
demographic-only models (median Concordance 0·821 / 0·813 / 0·789 for Deep-Survival / 
Classifier-Cox / demographic-only models). For MIMIC-IV, this is substantial when comparing 
newer, CNN-based, models to older feature-based models (median Concordance 0·774 / 0·769 / 
0·729 for Deep-Survival / Classifier-Cox / demographic-and-machine-measure models). See 
Supplemental Analysis for performance tables. 

Data Censoring – Horizon. In Classifier-Cox models, horizon choice agects performance. Short-
horizon data includes few positive-event samples but assumptions about censored patients have 
little egect. Long-horizon data has more positive-event samples but the assumptions about 
censored patients have time to compound. Our results indicate that horizon choice is both dataset-
specific, with opposing trends for Code-15 and MIMIC-IV, and substantial. 

Data Censoring – Labels. When training classifiers, we label events as a ‘1’ when patients 
experience an event by horizon h, else 0, even if censored. This same labeling applied to 
AUROC/PRC, but not Concordance. While there is no standard approach for integrating censored 
patients with time-dependent measures[30], past work tends to exclude patients that have not 
reached the horizon-of-interest[4,5], which inflates the event rate (imagine a 1000-person study 
with an annual 90 percent drop-out rate and 1 percent event rate: after two years there are 11 
events and 8 remaining controls). We chose to mark censored patients as non-events for classifier 
labels and AUROC/PRC to avoid inflating the event rate. This is reasonable for Code-15, where 
drop-out rates exceed event rates, and for MIMIC-IV, where censoring indicates lower patient risk. 

Limitations  
First, architectures are limited to those vetted for “long” physiological time-series. Second, while 
many papers tune model architectures specifically for their datasets, we did not and cannot 
provide guidance for architecture modifications. Third, past work typically evaluates model 
performance per pathology. Doing so requires expert input and dataset standardization across 
multiple databases, which is beyond the scope of this work. The ethical deployment of survival 
models in a clinical setting requires that model performance be evaluated in those contexts with 
appropriate subgroup analyses, oversight, and a focus on how model use impacts patient care.  

Conclusions  
We benchmark mortality prediction from ECGs with two CNN architectures on the two largest 
public ECG datasets using four Deep-Survival models and four Classifier-Cox regressions, and then 
extend the best configuration to a private ECG dataset. Our results highlight the importance of 
demographic-only baselines, the benefits of including demographics in AI-ECG modeling, and the 
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benefits of Deep-Survival models over Classifier-Cox approaches. Cross-dataset evaluation shows 
large performance drops and implies that model generalization is not guaranteed. Our results are 
reasonable given past studies and the event rates per dataset. We hope this provides a valuable 
resource for future ECG and ECG-mortality studies. 
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Supplements 
Additional Modeling Details 

Model Training  
Models train for up to 200 epochs, stopping early if their performance on the validation set does not 
improve for 20 consecutive epochs. As in past work[1], we use the AdamW optimizer, start with a 
1e-3 learning rate, and scale the learning rate by 0·1x if validation performance does not improve for 
10 consecutive epochs to a minimum of 1e-8[2]. We trained models with three random seeds for 
the (MIICIV + age + sex + machine measure) case and feedforward demographic models, and 
otherwise used five random seeds. Models were trained on a cluster that unpredictably provided a 
A40, A100, L40 or Nvidia Quadro GPU. Data was loaded to RAM, requesting 100GB for Code-15, 
150GB for BCH, and 300GB for MIMIC-IV. Training was done on batches of 512 shugled data 
samples with 256 loaded onto a GPU concurrently. Per configuration, we evaluate the model with 
minimum validation loss. 

Additionally, DeepSurv requires GPU batches to contain positive events for loss calculations; for 
these models, GPU-batches that contained no positive-event samples had their last sample 
replaced with a positive-event sample chosen randomly from the training set.  

Code-15 models averaged 4.5 hours to train and achieved maximum validation performance by 30 
epochs. MIMIC-IV models took 7.2 hours and achieved maximum validation performance by 12 
epochs. Training times depend on GPU, with faster GPUs taking 600s/epoch and slower ones up to 
2200s/epoch. GPU batch sizes were based on slower GPUs. 

 

Survival Modeling 
Concordance is measured with the Antolini Concordance[3] implementation from PyCox with 
score contributions weighted by Kaplan-Meier estimates. 

For Classifier-Cox models, the classifier’s output is a binary label predicting mortality by a time 
horizon. We treat this output as a generic biomarker and fit a Cox regression on validation data with 
the scikit-survival package[4-6]. This fitting step includes the full[time-to-event, event] information, 
so these regressions still model mortality over the full dataset’s timespan.  

The LH, MTLR, and DeepHit models fit survival functions at discrete time points. We used 100 
uniformly distributed time points between ‘0’ and the maximum time-to-event in each validation 
dataset. DeepSurv models and Cox regressions can be queried at any time of interest. 

Before measuring model performance, to maintain consistency, we sample the Cox and DeepSurv 
survival functions at the same 100 time points used to fit the LH, MTLR, and DeepHit models. This 
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sampling greatly simplifies Concordance calculations, which would otherwise need survival 
estimates for every ECG at every unique time-to-event. 

When measuring model performance at the 1,2,5,10-year marks, we use the temporally closest 
sampled survival function value (e.g. MIMIC-IV data has a maximum follow-up time of almost 13 
years; one-year AUROC is measured from the survival function at the 1.008-year mark). 

See[7] for a thorough guide to survival modeling. 
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Supplement table 1 

  

Supplemental Table 1. Comparisons between Classifier-Cox and Deep-Survival, and between 
InceptionTime and ResNet, for Code-15 and MIMIC-IV. 

Supplement table 2 

   

Supplemental Table 2. Concordance Index correlates with classifier horizon in Code-15 and MIMIC-
IV whether demographics are included or not. 

Supplement Table 3 

   

Supplemental Table 3. Code-15 and MIMIC-IV Models that include Age/Sex perform better than 
models that do not. 

N Category median 25th 75th median 25th 75th N Type median 25th 75th
40 Classifier-Cox 0.773 0.767 0.783 0.813 0.808 0.816 32 XGB/FF 0.789 0.787 0.791
40 Deep-Survival 0.792 0.787 0.800 0.821 0.818 0.824 12 FF 0.790 0.790 0.790

40 InceptionTime 0.778 0.773 0.788 0.816 0.813 0.819
40 Resnet 0.788 0.777 0.800 0.818 0.813 0.825

N Category median 25th 75th median 25th 75th N Type median 25th 75th
40 Classifier-Cox 0.758 0.753 0.763 0.769 0.763 0.775 32 XGB/FF 0.656 0.655 0.658
40 Deep-Survival 0.763 0.761 0.767 0.774 0.771 0.777 12 FF 0.654 0.653 0.654

4.50E-07
40 InceptionTime 0.760 0.758 0.764 0.772 0.769 0.776
40 Resnet 0.760 0.756 0.765 0.772 0.769 0.776

1.59E-01

9.40E-019.60E-01

Mann-Whitney P value

Mann-Whitney P value

Wilcoxon P value

Wilcoxon P value

5.88E-05 9.00E-04

ECG ECG + Demographic Demographic models
MIMIC-IV Concordance

Code-15 Concordance
ECG ECG + Demographic Demographic models

7.99E-09 3.56E-09

2.08E-021.32E-05

Dataset
Pearson R P value Pearson R P value

Code-15 0.35 2.49E-02 0.69 8.12E-07
MIMIC-IV -0.8377 1.57E-11 -0.8 5.49E-10

Classifier Horizon vs Concordance
ECG + Demographic ECG Only 

Dataset Data Types N median 25th 75th
ECG 80 0.783 0.743 0.808

ECG+Age+Sex 80 0.817 0.803 0.828

ECG 80 0.760 0.757 0.765
ECG+Age+Sex 80 0.772 0.769 0.776MIMIC-IV

7.85E-15Wilcoxon P value

Wilcoxon P value 7.85E-15

Code-15

ECG vs ECG + Demographics
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Supplemental Analysis 
Concordance is usually measured across all time points, although some authors suggest that 
endpoints are essential to proper model interpretation[36]. We include Concordance with event 
times censored to the one, two, five, and ten-year marks in Supplemental Table 4. The censoring 
determines which pairs are considered comparable. We also repeat this in a bootstrap manner, 
keeping only one ECG per subject in Supplemental Table 5.  

We also measure AUPRC and AUROC, comparing cumulative hazard, H(T) = 1 – S(t), to the ‘correct’ 
labels set just as in our classifier labeling (1 if a patient experiences an event by time T, else 0, even 
if censored), in Supplemental Table 6. 
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Supplement Table 4 

   

 Supplemental Table 4. Concordance (median, IQR) censored to year y. Yellow: Most Concordant 
non-CNN model. 

Data Architecture Model Covariates N 1-Yr (25-75th%) 2-Yr (25-75th%) 5-Yr (25-75th%) 10-Yr (25-75th%) All-Time (25-75th%)
Code15 Ribeiro DeepSurv age, sex 5 0.8333 (0.8327, 0.8335) 0.8297 (0.8289, 0.8306) 0.8278 (0.8272, 0.8283) 0.8276 (0.8270, 0.8280) 0.8276 (0.8270, 0.8280)
Code15 Ribeiro LH age, sex 5 0.8335 (0.8256, 0.8347) 0.8274 (0.8205, 0.8281) 0.825 (0.8213, 0.8260) 0.8248 (0.8211, 0.8256) 0.8248 (0.8211, 0.8256)
Code15 Ribeiro MTLR age, sex 5 0.8266 (0.8240, 0.8289) 0.8223 (0.8218, 0.8258) 0.8229 (0.8213, 0.8247) 0.8227 (0.8212, 0.8244) 0.8227 (0.8212, 0.8244)
Code15 Ribeiro DeepHit age, sex 5 0.8237 (0.8236, 0.8258) 0.8206 (0.8195, 0.8222) 0.8207 (0.8206, 0.8207) 0.8206 (0.8204, 0.8206) 0.8206 (0.8204, 0.8206)
Code15 InceptionTime MTLR age, sex 5 0.8233 (0.8214, 0.8262) 0.8193 (0.8186, 0.8220) 0.8201 (0.8196, 0.8228) 0.8201 (0.8195, 0.8225) 0.8201 (0.8195, 0.8225)
Code15 InceptionTime DeepHit age, sex 5 0.8231 (0.8229, 0.8233) 0.8203 (0.8192, 0.8208) 0.8198 (0.8183, 0.8217) 0.8197 (0.8183, 0.8216) 0.8197 (0.8183, 0.8216)
Code15 InceptionTime DeepSurv age, sex 5 0.8181 (0.8162, 0.8191) 0.8165 (0.8162, 0.8188) 0.8181 (0.8170, 0.8182) 0.8181 (0.8172, 0.8182) 0.8181 (0.8172, 0.8182)
Code15 InceptionTime LH age, sex 5 0.82 (0.8151, 0.8250) 0.8183 (0.8114, 0.8188) 0.8176 (0.8134, 0.8198) 0.8176 (0.8133, 0.8196) 0.8176 (0.8133, 0.8196)
Code15 Ribeiro Cla-5 age, sex 5 0.8212 (0.8183, 0.8261) 0.8163 (0.8138, 0.8224) 0.8166 (0.8126, 0.8209) 0.8166 (0.8128, 0.8207) 0.8166 (0.8128, 0.8207)
Code15 InceptionTime Cla-10 age, sex 5 0.8167 (0.8131, 0.8195) 0.8151 (0.8117, 0.8169) 0.8161 (0.8134, 0.8183) 0.8161 (0.8135, 0.8182) 0.8161 (0.8135, 0.8182)
Code15 Ribeiro Cla-10 age, sex 5 0.8185 (0.8131, 0.8232) 0.8174 (0.8094, 0.8176) 0.8156 (0.8092, 0.8181) 0.8154 (0.8093, 0.8181) 0.8154 (0.8093, 0.8181)
Code15 InceptionTime Cla-5 age, sex 5 0.8177 (0.8176, 0.8180) 0.8148 (0.8140, 0.8153) 0.8152 (0.8150, 0.8156) 0.8151 (0.8150, 0.8155) 0.8151 (0.8150, 0.8155)
Code15 Ribeiro Cla-1 age, sex 5 0.8262 (0.8182, 0.8314) 0.8151 (0.8083, 0.8184) 0.8129 (0.8073, 0.8135) 0.8125 (0.8072, 0.8129) 0.8125 (0.8072, 0.8129)
Code15 InceptionTime Cla-2 age, sex 5 0.8139 (0.8136, 0.8145) 0.8109 (0.8104, 0.8120) 0.8118 (0.8115, 0.8122) 0.8121 (0.8115, 0.8122) 0.8121 (0.8115, 0.8122)
Code15 Ribeiro Cla-2 age, sex 5 0.819 (0.8150, 0.8265) 0.8098 (0.8091, 0.8182) 0.8073 (0.8065, 0.8161) 0.807 (0.8064, 0.8159) 0.807 (0.8064, 0.8159)
Code15 InceptionTime Cla-1 age, sex 5 0.8118 (0.8081, 0.8150) 0.806 (0.8057, 0.8087) 0.8067 (0.8060, 0.8086) 0.8067 (0.8058, 0.8086) 0.8067 (0.8058, 0.8086)
Code15 FeedForward Cla-2 age, sex 3 0.7783 (0.7782, 0.7784) 0.7843 (0.7841, 0.7844) 0.7907 (0.7904, 0.7907) 0.7908 (0.7906, 0.7909) 0.7908 (0.7906, 0.7909)
Code15 Ribeiro DeepSurv none 5 0.8181 (0.8141, 0.8213) 0.8122 (0.8048, 0.8137) 0.8055 (0.7986, 0.8058) 0.8051 (0.7982, 0.8051) 0.8051 (0.7982, 0.8051)
Code15 Ribeiro LH none 5 0.8181 (0.8007, 0.8271) 0.8079 (0.7913, 0.8144) 0.8011 (0.7857, 0.8061) 0.8008 (0.7858, 0.8055) 0.8008 (0.7858, 0.8055)
Code15 Ribeiro MTLR none 5 0.8162 (0.8143, 0.8264) 0.8075 (0.8027, 0.8165) 0.8008 (0.7955, 0.8081) 0.8002 (0.7953, 0.8076) 0.8002 (0.7953, 0.8076)
Code15 Ribeiro DeepHit none 5 0.8157 (0.7823, 0.8193) 0.8059 (0.7757, 0.8080) 0.7971 (0.7678, 0.8006) 0.7969 (0.7680, 0.8002) 0.7969 (0.7680, 0.8002)
Code15 InceptionTime MTLR none 5 0.8049 (0.8045, 0.8067) 0.7946 (0.7942, 0.7968) 0.7902 (0.7901, 0.7912) 0.7901 (0.7900, 0.7910) 0.7901 (0.7900, 0.7910)
Code15 InceptionTime DeepSurv none 5 0.8038 (0.8024, 0.8040) 0.7944 (0.7919, 0.7944) 0.7887 (0.7886, 0.7887) 0.7883 (0.7883, 0.7887) 0.7883 (0.7883, 0.7887)
Code15 InceptionTime LH none 5 0.7985 (0.7878, 0.8015) 0.7905 (0.7840, 0.7968) 0.7877 (0.7818, 0.7933) 0.7876 (0.7819, 0.7932) 0.7876 (0.7819, 0.7932)
Code15 Ribeiro Cla-10 none 5 0.7961 (0.7934, 0.8035) 0.7924 (0.7891, 0.7961) 0.7872 (0.7839, 0.7889) 0.7869 (0.7838, 0.7887) 0.7869 (0.7838, 0.7887)
Code15 InceptionTime DeepHit none 5 0.7953 (0.7953, 0.7972) 0.7889 (0.7883, 0.7904) 0.7862 (0.7848, 0.7863) 0.786 (0.7847, 0.7861) 0.786 (0.7847, 0.7861)
Code15 Ribeiro Cla-5 none 5 0.8029 (0.7964, 0.8035) 0.7949 (0.7881, 0.7977) 0.7858 (0.7826, 0.7899) 0.7856 (0.7825, 0.7896) 0.7856 (0.7825, 0.7896)
Code15 InceptionTime Cla-10 none 5 0.7857 (0.7847, 0.7958) 0.7813 (0.7796, 0.7888) 0.7795 (0.7791, 0.7852) 0.7794 (0.7790, 0.7851) 0.7794 (0.7790, 0.7851)
Code15 InceptionTime Cla-5 none 5 0.7868 (0.7835, 0.7938) 0.7812 (0.7767, 0.7860) 0.7782 (0.7745, 0.7816) 0.778 (0.7742, 0.7814) 0.778 (0.7742, 0.7814)
Code15 Ribeiro Cla-2 none 5 0.7906 (0.7852, 0.7906) 0.7776 (0.7753, 0.7840) 0.7707 (0.7684, 0.7762) 0.7707 (0.7684, 0.7760) 0.7707 (0.7684, 0.7760)
Code15 Ribeiro Cla-1 none 5 0.7871 (0.7826, 0.7891) 0.7739 (0.7728, 0.7753) 0.767 (0.7604, 0.7677) 0.767 (0.7602, 0.7676) 0.767 (0.7602, 0.7676)
Code15 InceptionTime Cla-2 none 5 0.7808 (0.7761, 0.7844) 0.7716 (0.7647, 0.7780) 0.7666 (0.7582, 0.7735) 0.7666 (0.7581, 0.7734) 0.7666 (0.7581, 0.7734)
Code15 InceptionTime Cla-1 none 5 0.753 (0.7516, 0.7600) 0.7454 (0.7428, 0.7532) 0.7422 (0.7408, 0.7485) 0.7426 (0.7408, 0.7487) 0.7426 (0.7408, 0.7487)
MIMICIV Ribeiro LH age, sex 5 0.7975 (0.7920, 0.7987) 0.7882 (0.7831, 0.7891) 0.7811 (0.7764, 0.7817) 0.7797 (0.7751, 0.7803) 0.7797 (0.7751, 0.7802)
MIMICIV InceptionTime DeepHit age, sex 5 0.7965 (0.7959, 0.7978) 0.7876 (0.7867, 0.7893) 0.7805 (0.7801, 0.7828) 0.7793 (0.7789, 0.7816) 0.7793 (0.7789, 0.7816)
MIMICIV Ribeiro DeepHit age, sex 5 0.7936 (0.7928, 0.7937) 0.7848 (0.7839, 0.7850) 0.7782 (0.7775, 0.7783) 0.7769 (0.7762, 0.7770) 0.7769 (0.7762, 0.7770)
MIMICIV Ribeiro Cla-1 age, sex 5 0.7968 (0.7965, 0.7973) 0.7868 (0.7866, 0.7874) 0.7781 (0.7776, 0.7784) 0.7762 (0.7755, 0.7764) 0.7762 (0.7755, 0.7763)
MIMICIV InceptionTime Cla-1 age, sex 5 0.7973 (0.7960, 0.7975) 0.7872 (0.7852, 0.7876) 0.7777 (0.7747, 0.7780) 0.7757 (0.7725, 0.7759) 0.7757 (0.7725, 0.7759)
MIMICIV Ribeiro MTLR age, sex 5 0.7933 (0.7849, 0.7934) 0.7844 (0.7763, 0.7844) 0.7768 (0.7703, 0.7774) 0.7754 (0.7691, 0.7760) 0.7754 (0.7691, 0.7760)
MIMICIV InceptionTime MTLR age, sex 5 0.7916 (0.7899, 0.7929) 0.7829 (0.7811, 0.7845) 0.7762 (0.7741, 0.7771) 0.775 (0.7728, 0.7757) 0.775 (0.7728, 0.7757)
MIMICIV Ribeiro Cla-2 age, sex 5 0.7951 (0.7886, 0.7961) 0.7854 (0.7789, 0.7867) 0.7769 (0.7708, 0.7785) 0.775 (0.7690, 0.7767) 0.775 (0.7690, 0.7766)
MIMICIV InceptionTime LH age, sex 5 0.7931 (0.7919, 0.7957) 0.7837 (0.7834, 0.7867) 0.776 (0.7754, 0.7794) 0.7747 (0.7742, 0.7781) 0.7747 (0.7741, 0.7781)
MIMICIV InceptionTime Cla-2 age, sex 5 0.7952 (0.7947, 0.7953) 0.7854 (0.7850, 0.7855) 0.7765 (0.7763, 0.7768) 0.7746 (0.7746, 0.7750) 0.7746 (0.7745, 0.7749)
MIMICIV Ribeiro DeepSurv age, sex 5 0.7866 (0.7846, 0.7871) 0.7782 (0.7768, 0.7788) 0.7717 (0.7704, 0.7723) 0.7703 (0.7690, 0.7709) 0.7703 (0.7690, 0.7709)
MIMICIV InceptionTime DeepSurv age, sex 5 0.7843 (0.7832, 0.7848) 0.7771 (0.7753, 0.7775) 0.7713 (0.7691, 0.7715) 0.77 (0.7678, 0.7703) 0.7699 (0.7678, 0.7702)
MIMICIV Ribeiro Cla-5 age, sex 5 0.7872 (0.7835, 0.7886) 0.7783 (0.7748, 0.7795) 0.7712 (0.7678, 0.7724) 0.7697 (0.7664, 0.7709) 0.7697 (0.7664, 0.7709)
MIMICIV InceptionTime Cla-5 age, sex 5 0.7832 (0.7780, 0.7871) 0.7749 (0.7701, 0.7782) 0.7688 (0.7643, 0.7714) 0.7674 (0.7630, 0.7699) 0.7674 (0.7630, 0.7699)
MIMICIV Ribeiro Cla-10 age, sex 5 0.7787 (0.7714, 0.7819) 0.77 (0.7631, 0.7734) 0.7636 (0.7569, 0.7669) 0.7625 (0.7558, 0.7656) 0.7625 (0.7558, 0.7656)
MIMICIV InceptionTime Cla-10 age, sex 5 0.7741 (0.7725, 0.7759) 0.7664 (0.7644, 0.7685) 0.7607 (0.7594, 0.7632) 0.7597 (0.7583, 0.7620) 0.7597 (0.7583, 0.7620)
MIMICIV FeedForward Cla-2 age, sex 3 0.6562 (0.6562, 0.6563) 0.6552 (0.6552, 0.6553) 0.6574 (0.6573, 0.6574) 0.6578 (0.6577, 0.6578) 0.6578 (0.6577, 0.6578)
MIMICIV Ribeiro Cla-1 age, sex, auto-ECG 3 0.7977 (0.7941, 0.7991) 0.7876 (0.7843, 0.7890) 0.7787 (0.7753, 0.7797) 0.7767 (0.7733, 0.7776) 0.7767 (0.7733, 0.7776)
MIMICIV Ribeiro DeepHit age, sex, auto-ECG 3 0.7928 (0.7912, 0.7937) 0.7838 (0.7824, 0.7850) 0.7768 (0.7759, 0.7781) 0.7754 (0.7745, 0.7767) 0.7754 (0.7745, 0.7767)
MIMICIV Ribeiro LH age, sex, auto-ECG 3 0.7923 (0.7901, 0.7942) 0.7835 (0.7810, 0.7852) 0.7763 (0.7738, 0.7779) 0.7749 (0.7725, 0.7765) 0.7749 (0.7725, 0.7765)
MIMICIV InceptionTime DeepHit age, sex, auto-ECG 3 0.7903 (0.7864, 0.7909) 0.7818 (0.7771, 0.7824) 0.7756 (0.7696, 0.7761) 0.7744 (0.7683, 0.7749) 0.7744 (0.7683, 0.7749)
MIMICIV InceptionTime LH age, sex, auto-ECG 3 0.7909 (0.7898, 0.7921) 0.7822 (0.7812, 0.7831) 0.7752 (0.7742, 0.7757) 0.7738 (0.7728, 0.7743) 0.7738 (0.7728, 0.7742)
MIMICIV InceptionTime Cla-2 age, sex, auto-ECG 3 0.7944 (0.7923, 0.7944) 0.7844 (0.7824, 0.7845) 0.7755 (0.7739, 0.7756) 0.7735 (0.7721, 0.7736) 0.7735 (0.7721, 0.7736)
MIMICIV Ribeiro DeepSurv age, sex, auto-ECG 3 0.7875 (0.7868, 0.7888) 0.7798 (0.7791, 0.7808) 0.7733 (0.7727, 0.7740) 0.772 (0.7713, 0.7725) 0.772 (0.7713, 0.7725)
MIMICIV InceptionTime Cla-1 age, sex, auto-ECG 3 0.7938 (0.7924, 0.7952) 0.7833 (0.7824, 0.7847) 0.7735 (0.7730, 0.7749) 0.7713 (0.7709, 0.7727) 0.7713 (0.7709, 0.7727)
MIMICIV Ribeiro Cla-2 age, sex, auto-ECG 3 0.7919 (0.7829, 0.7943) 0.782 (0.7736, 0.7847) 0.7731 (0.7655, 0.7763) 0.7712 (0.7637, 0.7744) 0.7712 (0.7637, 0.7744)
MIMICIV InceptionTime MTLR age, sex, auto-ECG 3 0.7876 (0.7855, 0.7910) 0.7787 (0.7764, 0.7818) 0.7716 (0.7689, 0.7743) 0.7703 (0.7675, 0.7730) 0.7703 (0.7675, 0.7730)
MIMICIV InceptionTime Cla-5 age, sex, auto-ECG 3 0.7843 (0.7840, 0.7852) 0.7763 (0.7755, 0.7769) 0.7702 (0.7689, 0.7705) 0.7688 (0.7675, 0.7691) 0.7688 (0.7675, 0.7691)
MIMICIV Ribeiro Cla-5 age, sex, auto-ECG 3 0.7858 (0.7843, 0.7861) 0.777 (0.7757, 0.7773) 0.7699 (0.7688, 0.7705) 0.7684 (0.7673, 0.7690) 0.7684 (0.7673, 0.7690)
MIMICIV Ribeiro MTLR age, sex, auto-ECG 3 0.785 (0.7821, 0.7882) 0.7757 (0.7731, 0.7789) 0.7687 (0.7664, 0.7718) 0.7674 (0.7651, 0.7704) 0.7674 (0.7651, 0.7704)
MIMICIV InceptionTime DeepSurv age, sex, auto-ECG 3 0.7805 (0.7788, 0.7809) 0.7732 (0.7715, 0.7736) 0.7673 (0.7656, 0.7678) 0.7661 (0.7644, 0.7665) 0.766 (0.7643, 0.7665)
MIMICIV Ribeiro Cla-10 age, sex, auto-ECG 3 0.7778 (0.7777, 0.7781) 0.7695 (0.7695, 0.7695) 0.7632 (0.7631, 0.7633) 0.7619 (0.7618, 0.7621) 0.7619 (0.7618, 0.7620)
MIMICIV InceptionTime Cla-10 age, sex, auto-ECG 3 0.7762 (0.7740, 0.7775) 0.768 (0.7659, 0.7693) 0.7625 (0.7603, 0.7638) 0.7614 (0.7591, 0.7627) 0.7614 (0.7591, 0.7627)
MIMICIV XGB Cla-2 age, sex, auto-ECG 5 0.7422 (0.7421, 0.7422) 0.7352 (0.7351, 0.7352) 0.7297 (0.7296, 0.7298) 0.7287 (0.7286, 0.7288) 0.7287 (0.7286, 0.7288)
MIMICIV InceptionTime DeepHit none 5 0.7873 (0.7869, 0.7881) 0.7783 (0.7770, 0.7784) 0.7707 (0.7683, 0.7709) 0.7691 (0.7666, 0.7694) 0.7691 (0.7665, 0.7694)
MIMICIV Ribeiro MTLR none 5 0.7844 (0.7821, 0.7846) 0.7754 (0.7728, 0.7755) 0.7675 (0.7652, 0.7676) 0.7659 (0.7638, 0.7661) 0.7659 (0.7638, 0.7661)
MIMICIV Ribeiro DeepHit none 5 0.7842 (0.7812, 0.7863) 0.7753 (0.7721, 0.7778) 0.7672 (0.7652, 0.7702) 0.7656 (0.7636, 0.7687) 0.7656 (0.7636, 0.7687)
MIMICIV Ribeiro LH none 5 0.7833 (0.7776, 0.7836) 0.7744 (0.7684, 0.7746) 0.7668 (0.7613, 0.7668) 0.7652 (0.7599, 0.7653) 0.7652 (0.7599, 0.7653)
MIMICIV InceptionTime LH none 5 0.7834 (0.7809, 0.7864) 0.7742 (0.7719, 0.7771) 0.7659 (0.7641, 0.7691) 0.7642 (0.7627, 0.7674) 0.7642 (0.7626, 0.7674)
MIMICIV Ribeiro Cla-1 none 5 0.7852 (0.7802, 0.7868) 0.7753 (0.7699, 0.7770) 0.7663 (0.7596, 0.7683) 0.7643 (0.7574, 0.7662) 0.7642 (0.7574, 0.7662)
MIMICIV InceptionTime MTLR none 5 0.784 (0.7829, 0.7866) 0.7741 (0.7733, 0.7775) 0.7654 (0.7644, 0.7694) 0.7637 (0.7626, 0.7677) 0.7637 (0.7626, 0.7677)
MIMICIV InceptionTime Cla-2 none 5 0.7847 (0.7826, 0.7858) 0.7745 (0.7731, 0.7753) 0.7647 (0.7646, 0.7655) 0.7626 (0.7626, 0.7633) 0.7626 (0.7625, 0.7633)
MIMICIV InceptionTime Cla-1 none 5 0.7855 (0.7853, 0.7875) 0.7746 (0.7741, 0.7768) 0.7642 (0.7632, 0.7663) 0.762 (0.7609, 0.7639) 0.762 (0.7608, 0.7639)
MIMICIV Ribeiro Cla-2 none 5 0.7826 (0.7755, 0.7853) 0.7727 (0.7652, 0.7756) 0.7634 (0.7550, 0.7672) 0.7614 (0.7529, 0.7652) 0.7614 (0.7529, 0.7652)
MIMICIV Ribeiro DeepSurv none 5 0.7785 (0.7767, 0.7800) 0.7699 (0.7686, 0.7718) 0.762 (0.7613, 0.7642) 0.7603 (0.7597, 0.7625) 0.7603 (0.7597, 0.7625)
MIMICIV InceptionTime DeepSurv none 5 0.7757 (0.7723, 0.7761) 0.7674 (0.7642, 0.7679) 0.7602 (0.7574, 0.7606) 0.7585 (0.7559, 0.7591) 0.7585 (0.7558, 0.7591)
MIMICIV InceptionTime Cla-5 none 5 0.7754 (0.7723, 0.7781) 0.7664 (0.7634, 0.7692) 0.7594 (0.7562, 0.7614) 0.7579 (0.7546, 0.7596) 0.7579 (0.7546, 0.7596)
MIMICIV Ribeiro Cla-5 none 5 0.7753 (0.7734, 0.7757) 0.766 (0.7654, 0.7670) 0.7587 (0.7582, 0.7597) 0.7571 (0.7566, 0.7580) 0.7571 (0.7566, 0.7580)
MIMICIV InceptionTime Cla-10 none 5 0.7663 (0.7663, 0.7666) 0.758 (0.7580, 0.7586) 0.752 (0.7512, 0.7527) 0.7506 (0.7498, 0.7513) 0.7506 (0.7498, 0.7513)
MIMICIV Ribeiro Cla-10 none 5 0.7663 (0.7642, 0.7688) 0.7576 (0.7558, 0.7606) 0.7505 (0.7490, 0.7539) 0.749 (0.7477, 0.7525) 0.749 (0.7477, 0.7524)
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Supplemental Table 5. Concordance (median, IQR) censored to year y, bootstrapped 20x with one 
ECG/PID. Yellow: Most Concordant non-CNN model. 

Data Architecture Model Covariates N 1-Yr (25-75th%) 2-Yr (25-75th%) 5-Yr (25-75th%) 10-Yr (25-75th%) All-Time (25-75th%)
Code15 Ribeiro DeepSurv age, sex 5 0.8333 (0.8327, 0.8335) 0.8297 (0.8289, 0.8306) 0.8278 (0.8272, 0.8283) 0.8276 (0.8270, 0.8280) 0.8276 (0.8270, 0.8280)
Code15 Ribeiro LH age, sex 5 0.8335 (0.8256, 0.8347) 0.8274 (0.8205, 0.8281) 0.825 (0.8213, 0.8260) 0.8248 (0.8211, 0.8256) 0.8248 (0.8211, 0.8256)
Code15 Ribeiro MTLR age, sex 5 0.8266 (0.8240, 0.8289) 0.8223 (0.8218, 0.8258) 0.8229 (0.8213, 0.8247) 0.8227 (0.8212, 0.8244) 0.8227 (0.8212, 0.8244)
Code15 Ribeiro DeepHit age, sex 5 0.8237 (0.8236, 0.8258) 0.8206 (0.8195, 0.8222) 0.8207 (0.8206, 0.8207) 0.8206 (0.8204, 0.8206) 0.8206 (0.8204, 0.8206)
Code15 InceptionTime MTLR age, sex 5 0.8233 (0.8214, 0.8262) 0.8193 (0.8186, 0.8220) 0.8201 (0.8196, 0.8228) 0.8201 (0.8195, 0.8225) 0.8201 (0.8195, 0.8225)
Code15 InceptionTime DeepHit age, sex 5 0.8231 (0.8229, 0.8233) 0.8203 (0.8192, 0.8208) 0.8198 (0.8183, 0.8217) 0.8197 (0.8183, 0.8216) 0.8197 (0.8183, 0.8216)
Code15 InceptionTime DeepSurv age, sex 5 0.8181 (0.8162, 0.8191) 0.8165 (0.8162, 0.8188) 0.8181 (0.8170, 0.8182) 0.8181 (0.8172, 0.8182) 0.8181 (0.8172, 0.8182)
Code15 InceptionTime LH age, sex 5 0.82 (0.8151, 0.8250) 0.8183 (0.8114, 0.8188) 0.8176 (0.8134, 0.8198) 0.8176 (0.8133, 0.8196) 0.8176 (0.8133, 0.8196)
Code15 Ribeiro Cla-5 age, sex 5 0.8212 (0.8183, 0.8261) 0.8163 (0.8138, 0.8224) 0.8166 (0.8126, 0.8209) 0.8166 (0.8128, 0.8207) 0.8166 (0.8128, 0.8207)
Code15 InceptionTime Cla-10 age, sex 5 0.8167 (0.8131, 0.8195) 0.8151 (0.8117, 0.8169) 0.8161 (0.8134, 0.8183) 0.8161 (0.8135, 0.8182) 0.8161 (0.8135, 0.8182)
Code15 Ribeiro Cla-10 age, sex 5 0.8185 (0.8131, 0.8232) 0.8174 (0.8094, 0.8176) 0.8156 (0.8092, 0.8181) 0.8154 (0.8093, 0.8181) 0.8154 (0.8093, 0.8181)
Code15 InceptionTime Cla-5 age, sex 5 0.8177 (0.8176, 0.8180) 0.8148 (0.8140, 0.8153) 0.8152 (0.8150, 0.8156) 0.8151 (0.8150, 0.8155) 0.8151 (0.8150, 0.8155)
Code15 Ribeiro Cla-1 age, sex 5 0.8262 (0.8182, 0.8314) 0.8151 (0.8083, 0.8184) 0.8129 (0.8073, 0.8135) 0.8125 (0.8072, 0.8129) 0.8125 (0.8072, 0.8129)
Code15 InceptionTime Cla-2 age, sex 5 0.8139 (0.8136, 0.8145) 0.8109 (0.8104, 0.8120) 0.8118 (0.8115, 0.8122) 0.8121 (0.8115, 0.8122) 0.8121 (0.8115, 0.8122)
Code15 Ribeiro Cla-2 age, sex 5 0.819 (0.8150, 0.8265) 0.8098 (0.8091, 0.8182) 0.8073 (0.8065, 0.8161) 0.807 (0.8064, 0.8159) 0.807 (0.8064, 0.8159)
Code15 InceptionTime Cla-1 age, sex 5 0.8118 (0.8081, 0.8150) 0.806 (0.8057, 0.8087) 0.8067 (0.8060, 0.8086) 0.8067 (0.8058, 0.8086) 0.8067 (0.8058, 0.8086)
Code15 FeedForward Cla-2 age, sex 3 0.7783 (0.7780, 0.7785) 0.7843 (0.7839, 0.7845) 0.7907 (0.7902, 0.7908) 0.7908 (0.7904, 0.7910) 0.7908 (0.7904, 0.7910)
Code15 Ribeiro DeepSurv none 5 0.8181 (0.8141, 0.8213) 0.8122 (0.8048, 0.8137) 0.8055 (0.7986, 0.8058) 0.8051 (0.7982, 0.8051) 0.8051 (0.7982, 0.8051)
Code15 Ribeiro LH none 5 0.8181 (0.8007, 0.8271) 0.8079 (0.7913, 0.8144) 0.8011 (0.7857, 0.8061) 0.8008 (0.7858, 0.8055) 0.8008 (0.7858, 0.8055)
Code15 Ribeiro MTLR none 5 0.8162 (0.8143, 0.8264) 0.8075 (0.8027, 0.8165) 0.8008 (0.7955, 0.8081) 0.8002 (0.7953, 0.8076) 0.8002 (0.7953, 0.8076)
Code15 Ribeiro DeepHit none 5 0.8157 (0.7823, 0.8193) 0.8059 (0.7757, 0.8080) 0.7971 (0.7678, 0.8006) 0.7969 (0.7680, 0.8002) 0.7969 (0.7680, 0.8002)
Code15 InceptionTime MTLR none 5 0.8049 (0.8045, 0.8067) 0.7946 (0.7942, 0.7968) 0.7902 (0.7901, 0.7912) 0.7901 (0.7900, 0.7910) 0.7901 (0.7900, 0.7910)
Code15 InceptionTime DeepSurv none 5 0.8038 (0.8024, 0.8040) 0.7944 (0.7919, 0.7944) 0.7887 (0.7886, 0.7887) 0.7883 (0.7883, 0.7887) 0.7883 (0.7883, 0.7887)
Code15 InceptionTime LH none 5 0.7985 (0.7878, 0.8015) 0.7905 (0.7840, 0.7968) 0.7877 (0.7818, 0.7933) 0.7876 (0.7819, 0.7932) 0.7876 (0.7819, 0.7932)
Code15 Ribeiro Cla-10 none 5 0.7961 (0.7934, 0.8035) 0.7924 (0.7891, 0.7961) 0.7872 (0.7839, 0.7889) 0.7869 (0.7838, 0.7887) 0.7869 (0.7838, 0.7887)
Code15 InceptionTime DeepHit none 5 0.7953 (0.7953, 0.7972) 0.7889 (0.7883, 0.7904) 0.7862 (0.7848, 0.7863) 0.786 (0.7847, 0.7861) 0.786 (0.7847, 0.7861)
Code15 Ribeiro Cla-5 none 5 0.8029 (0.7964, 0.8035) 0.7949 (0.7881, 0.7977) 0.7858 (0.7826, 0.7899) 0.7856 (0.7825, 0.7896) 0.7856 (0.7825, 0.7896)
Code15 InceptionTime Cla-10 none 5 0.7857 (0.7847, 0.7958) 0.7813 (0.7796, 0.7888) 0.7795 (0.7791, 0.7852) 0.7794 (0.7790, 0.7851) 0.7794 (0.7790, 0.7851)
Code15 InceptionTime Cla-5 none 5 0.7868 (0.7835, 0.7938) 0.7812 (0.7767, 0.7860) 0.7782 (0.7745, 0.7816) 0.778 (0.7742, 0.7814) 0.778 (0.7742, 0.7814)
Code15 Ribeiro Cla-2 none 5 0.7906 (0.7852, 0.7906) 0.7776 (0.7753, 0.7840) 0.7707 (0.7684, 0.7762) 0.7707 (0.7684, 0.7760) 0.7707 (0.7684, 0.7760)
Code15 Ribeiro Cla-1 none 5 0.7871 (0.7826, 0.7891) 0.7739 (0.7728, 0.7753) 0.767 (0.7604, 0.7677) 0.767 (0.7602, 0.7676) 0.767 (0.7602, 0.7676)
Code15 InceptionTime Cla-2 none 5 0.7808 (0.7761, 0.7844) 0.7716 (0.7647, 0.7780) 0.7666 (0.7582, 0.7735) 0.7666 (0.7581, 0.7734) 0.7666 (0.7581, 0.7734)
Code15 InceptionTime Cla-1 none 5 0.753 (0.7516, 0.7600) 0.7454 (0.7428, 0.7532) 0.7422 (0.7408, 0.7485) 0.7426 (0.7408, 0.7487) 0.7426 (0.7408, 0.7487)
MIMICIV Ribeiro Cla-1 age, sex 5 0.8381 (0.8370, 0.8399) 0.8342 (0.8330, 0.8358) 0.8314 (0.8302, 0.8329) 0.8308 (0.8296, 0.8323) 0.8308 (0.8296, 0.8323)
MIMICIV Ribeiro Cla-2 age, sex 5 0.8368 (0.8316, 0.8389) 0.8329 (0.8276, 0.8349) 0.83 (0.8251, 0.8320) 0.8296 (0.8247, 0.8314) 0.8295 (0.8246, 0.8314)
MIMICIV InceptionTime Cla-2 age, sex 5 0.8359 (0.8348, 0.8376) 0.832 (0.8308, 0.8336) 0.8292 (0.8279, 0.8309) 0.8288 (0.8274, 0.8304) 0.8287 (0.8274, 0.8304)
MIMICIV InceptionTime Cla-1 age, sex 5 0.8349 (0.8336, 0.8367) 0.8309 (0.8296, 0.8330) 0.8278 (0.8265, 0.8299) 0.8272 (0.8259, 0.8293) 0.8272 (0.8259, 0.8293)
MIMICIV Ribeiro Cla-5 age, sex 5 0.8319 (0.8278, 0.8341) 0.8282 (0.8240, 0.8300) 0.8257 (0.8215, 0.8276) 0.8253 (0.8210, 0.8272) 0.8253 (0.8209, 0.8272)
MIMICIV InceptionTime Cla-5 age, sex 5 0.83 (0.8266, 0.8318) 0.8266 (0.8230, 0.8281) 0.824 (0.8210, 0.8258) 0.8236 (0.8206, 0.8255) 0.8236 (0.8206, 0.8255)
MIMICIV Ribeiro Cla-10 age, sex 5 0.8266 (0.8196, 0.8290) 0.8227 (0.8161, 0.8254) 0.8202 (0.8139, 0.8231) 0.8199 (0.8134, 0.8226) 0.8199 (0.8134, 0.8226)
MIMICIV InceptionTime Cla-10 age, sex 5 0.8248 (0.8229, 0.8259) 0.8212 (0.8193, 0.8226) 0.8192 (0.8171, 0.8206) 0.8188 (0.8169, 0.8202) 0.8188 (0.8169, 0.8202)
MIMICIV InceptionTime DeepHit age, sex 5 0.8242 (0.8227, 0.8256) 0.8208 (0.8196, 0.8225) 0.819 (0.8177, 0.8205) 0.8187 (0.8174, 0.8203) 0.8187 (0.8174, 0.8203)
MIMICIV Ribeiro LH age, sex 5 0.8231 (0.8205, 0.8258) 0.8197 (0.8171, 0.8226) 0.8175 (0.8148, 0.8205) 0.8172 (0.8144, 0.8202) 0.8172 (0.8144, 0.8202)
MIMICIV Ribeiro DeepHit age, sex 5 0.8213 (0.8198, 0.8226) 0.8179 (0.8167, 0.8193) 0.816 (0.8148, 0.8172) 0.8157 (0.8145, 0.8169) 0.8157 (0.8145, 0.8169)
MIMICIV InceptionTime LH age, sex 5 0.8204 (0.8177, 0.8228) 0.8171 (0.8143, 0.8192) 0.8151 (0.8121, 0.8171) 0.8148 (0.8118, 0.8168) 0.8148 (0.8118, 0.8168)
MIMICIV Ribeiro MTLR age, sex 5 0.8198 (0.8160, 0.8217) 0.8162 (0.8128, 0.8184) 0.8141 (0.8109, 0.8162) 0.8138 (0.8106, 0.8159) 0.8138 (0.8106, 0.8159)
MIMICIV InceptionTime MTLR age, sex 5 0.8187 (0.8166, 0.8218) 0.8153 (0.8136, 0.8185) 0.8134 (0.8117, 0.8164) 0.8131 (0.8113, 0.8162) 0.8131 (0.8113, 0.8162)
MIMICIV InceptionTime DeepSurv age, sex 5 0.8183 (0.8171, 0.8199) 0.8153 (0.8142, 0.8167) 0.8134 (0.8121, 0.8148) 0.8131 (0.8118, 0.8145) 0.8131 (0.8118, 0.8145)
MIMICIV Ribeiro DeepSurv age, sex 5 0.8173 (0.8132, 0.8198) 0.8138 (0.8104, 0.8165) 0.8115 (0.8086, 0.8143) 0.8112 (0.8081, 0.8140) 0.8112 (0.8081, 0.8139)
MIMICIV FeedForward Cla-10 age, sex 3 0.7291 (0.7279, 0.7302) 0.7281 (0.7269, 0.7288) 0.728 (0.7269, 0.7286) 0.7281 (0.7270, 0.7286) 0.7281 (0.7270, 0.7286)
MIMICIV FeedForward Cla-2 age, sex 3 0.729 (0.7278, 0.7302) 0.728 (0.7268, 0.7288) 0.7279 (0.7270, 0.7286) 0.728 (0.7271, 0.7286) 0.728 (0.7271, 0.7286)
MIMICIV Ribeiro Cla-1 age, sex, auto-ECG 3 0.8377 (0.8343, 0.8392) 0.8339 (0.8301, 0.8349) 0.8308 (0.8270, 0.8319) 0.8302 (0.8265, 0.8314) 0.8302 (0.8265, 0.8314)
MIMICIV InceptionTime Cla-1 age, sex, auto-ECG 3 0.8345 (0.8328, 0.8355) 0.8305 (0.8288, 0.8313) 0.8274 (0.8257, 0.8283) 0.8269 (0.8251, 0.8277) 0.8268 (0.8250, 0.8277)
MIMICIV Ribeiro Cla-2 age, sex, auto-ECG 3 0.8336 (0.8214, 0.8379) 0.8295 (0.8178, 0.8341) 0.8265 (0.8154, 0.8313) 0.826 (0.8149, 0.8308) 0.826 (0.8149, 0.8308)
MIMICIV InceptionTime Cla-2 age, sex, auto-ECG 3 0.8326 (0.8318, 0.8338) 0.8286 (0.8277, 0.8296) 0.8259 (0.8249, 0.8270) 0.8254 (0.8243, 0.8264) 0.8254 (0.8243, 0.8264)
MIMICIV Ribeiro Cla-5 age, sex, auto-ECG 3 0.8324 (0.8286, 0.8335) 0.8283 (0.8250, 0.8294) 0.8257 (0.8225, 0.8269) 0.8254 (0.8221, 0.8265) 0.8254 (0.8221, 0.8265)
MIMICIV InceptionTime Cla-5 age, sex, auto-ECG 3 0.8307 (0.8275, 0.8327) 0.8269 (0.8238, 0.8290) 0.8247 (0.8215, 0.8265) 0.8243 (0.8211, 0.8261) 0.8243 (0.8211, 0.8261)
MIMICIV Ribeiro Cla-10 age, sex, auto-ECG 3 0.8264 (0.8257, 0.8275) 0.8228 (0.8220, 0.8236) 0.8204 (0.8196, 0.8213) 0.82 (0.8193, 0.8210) 0.82 (0.8193, 0.8210)
MIMICIV InceptionTime Cla-10 age, sex, auto-ECG 3 0.8259 (0.8225, 0.8271) 0.8224 (0.8185, 0.8234) 0.8202 (0.8167, 0.8213) 0.8198 (0.8163, 0.8209) 0.8198 (0.8163, 0.8209)
MIMICIV Ribeiro DeepSurv age, sex, auto-ECG 3 0.8202 (0.8192, 0.8212) 0.8173 (0.8160, 0.8180) 0.8151 (0.8141, 0.8158) 0.8147 (0.8137, 0.8154) 0.8147 (0.8137, 0.8154)
MIMICIV Ribeiro DeepHit age, sex, auto-ECG 3 0.8196 (0.8178, 0.8241) 0.8161 (0.8142, 0.8212) 0.8141 (0.8121, 0.8193) 0.8138 (0.8118, 0.8190) 0.8138 (0.8118, 0.8190)
MIMICIV InceptionTime DeepHit age, sex, auto-ECG 3 0.8181 (0.8097, 0.8200) 0.8147 (0.8060, 0.8167) 0.8129 (0.8033, 0.8147) 0.8127 (0.8030, 0.8144) 0.8127 (0.8029, 0.8144)
MIMICIV InceptionTime LH age, sex, auto-ECG 3 0.8175 (0.8158, 0.8196) 0.8143 (0.8126, 0.8159) 0.8122 (0.8106, 0.8136) 0.812 (0.8103, 0.8132) 0.812 (0.8103, 0.8132)
MIMICIV InceptionTime MTLR age, sex, auto-ECG 3 0.8161 (0.8144, 0.8193) 0.8127 (0.8108, 0.8160) 0.8101 (0.8086, 0.8135) 0.8098 (0.8083, 0.8132) 0.8098 (0.8083, 0.8132)
MIMICIV Ribeiro LH age, sex, auto-ECG 3 0.8156 (0.8137, 0.8216) 0.8121 (0.8104, 0.8181) 0.8096 (0.8082, 0.8157) 0.8093 (0.8078, 0.8154) 0.8093 (0.8078, 0.8154)
MIMICIV InceptionTime DeepSurv age, sex, auto-ECG 3 0.8137 (0.8121, 0.8149) 0.8106 (0.8090, 0.8118) 0.8087 (0.8072, 0.8100) 0.8085 (0.8069, 0.8098) 0.8085 (0.8069, 0.8098)
MIMICIV Ribeiro MTLR age, sex, auto-ECG 3 0.8118 (0.8094, 0.8182) 0.8082 (0.8059, 0.8147) 0.806 (0.8038, 0.8125) 0.8057 (0.8035, 0.8121) 0.8057 (0.8035, 0.8121)
MIMICIV XGB Cla-2 age, sex, auto-ECG 5 0.7975 (0.7963, 0.7987) 0.7945 (0.7932, 0.7953) 0.7925 (0.7912, 0.7932) 0.792 (0.7908, 0.7928) 0.792 (0.7908, 0.7928)
MIMICIV Ribeiro Cla-1 none 5 0.8236 (0.8140, 0.8266) 0.8194 (0.8096, 0.8224) 0.8164 (0.8063, 0.8196) 0.8159 (0.8055, 0.8189) 0.8159 (0.8055, 0.8189)
MIMICIV InceptionTime Cla-2 none 5 0.8209 (0.8194, 0.8227) 0.8167 (0.8153, 0.8186) 0.8138 (0.8123, 0.8156) 0.8132 (0.8118, 0.8150) 0.8132 (0.8118, 0.8150)
MIMICIV InceptionTime Cla-1 none 5 0.8199 (0.8181, 0.8218) 0.8155 (0.8138, 0.8174) 0.8121 (0.8104, 0.8142) 0.8115 (0.8099, 0.8135) 0.8114 (0.8099, 0.8135)
MIMICIV Ribeiro Cla-5 none 5 0.8185 (0.8168, 0.8199) 0.8144 (0.8130, 0.8158) 0.8119 (0.8103, 0.8133) 0.8113 (0.8098, 0.8128) 0.8113 (0.8098, 0.8128)
MIMICIV Ribeiro Cla-2 none 5 0.819 (0.8125, 0.8233) 0.8149 (0.8085, 0.8192) 0.8117 (0.8056, 0.8159) 0.8112 (0.8049, 0.8153) 0.8112 (0.8049, 0.8153)
MIMICIV InceptionTime Cla-5 none 5 0.818 (0.8159, 0.8197) 0.814 (0.8118, 0.8156) 0.8115 (0.8092, 0.8131) 0.811 (0.8088, 0.8125) 0.811 (0.8088, 0.8125)
MIMICIV InceptionTime Cla-10 none 5 0.8128 (0.8097, 0.8143) 0.8089 (0.8061, 0.8104) 0.8065 (0.8036, 0.8080) 0.8061 (0.8032, 0.8076) 0.8061 (0.8032, 0.8076)
MIMICIV Ribeiro Cla-10 none 5 0.8127 (0.8113, 0.8143) 0.8087 (0.8075, 0.8104) 0.8063 (0.8050, 0.8080) 0.8058 (0.8046, 0.8075) 0.8058 (0.8045, 0.8075)
MIMICIV InceptionTime DeepHit none 5 0.8114 (0.8092, 0.8133) 0.8077 (0.8054, 0.8097) 0.8057 (0.8034, 0.8075) 0.8053 (0.8030, 0.8071) 0.8053 (0.8030, 0.8071)
MIMICIV Ribeiro DeepHit none 5 0.8105 (0.8068, 0.8128) 0.8066 (0.8033, 0.8092) 0.8045 (0.8011, 0.8070) 0.804 (0.8008, 0.8066) 0.804 (0.8008, 0.8066)
MIMICIV Ribeiro LH none 5 0.8072 (0.8026, 0.8098) 0.8037 (0.7990, 0.8062) 0.8014 (0.7966, 0.8039) 0.801 (0.7962, 0.8035) 0.801 (0.7962, 0.8035)
MIMICIV InceptionTime MTLR none 5 0.8075 (0.8028, 0.8093) 0.8038 (0.7989, 0.8059) 0.8014 (0.7965, 0.8037) 0.8009 (0.7961, 0.8032) 0.8009 (0.7961, 0.8032)
MIMICIV Ribeiro MTLR none 5 0.8068 (0.8030, 0.8095) 0.8034 (0.7991, 0.8058) 0.8012 (0.7967, 0.8034) 0.8008 (0.7963, 0.8030) 0.8008 (0.7963, 0.8030)
MIMICIV Ribeiro DeepSurv none 5 0.8073 (0.8034, 0.8094) 0.8039 (0.7998, 0.8061) 0.8013 (0.7978, 0.8037) 0.8008 (0.7974, 0.8032) 0.8008 (0.7974, 0.8032)
MIMICIV InceptionTime LH none 5 0.8049 (0.8016, 0.8085) 0.8013 (0.7984, 0.8053) 0.7992 (0.7960, 0.8030) 0.7987 (0.7957, 0.8026) 0.7987 (0.7956, 0.8026)
MIMICIV InceptionTime DeepSurv none 5 0.8031 (0.7995, 0.8055) 0.7997 (0.7960, 0.8021) 0.7975 (0.7941, 0.7998) 0.7971 (0.7937, 0.7994) 0.7971 (0.7937, 0.7994)

Concordance (censored to year y ), bootstrapped 20x with 1 ECG per patient
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Supplement Table 6 

  

Supplemental Table 6. AUROC, AUPRC, Yellow: Most Concordant non-CNN model. 

Data Architecture Model Covariates N 1-Yr (25-75th%) 2-Yr (25-75th%) 5-Yr (25-75th%) 10-Yr (25-75th%) 1-Yr (25-75th%) 2-Yr (25-75th%) 5-Yr (25-75th%) 10-Yr (25-75th%)
Code15 Ribeiro DeepSurv age, sex 5 0.84 (0.83, 0.84) 0.83 (0.83, 0.83) 0.83 (0.83, 0.84) 0.83 (0.83, 0.84) 0.08 (0.07, 0.08) 0.11 (0.10, 0.11) 0.15 (0.15, 0.15) 0.16 (0.15, 0.16)
Code15 Ribeiro LH age, sex 5 0.83 (0.83, 0.84) 0.83 (0.82, 0.83) 0.83 (0.83, 0.83) 0.83 (0.83, 0.83) 0.07 (0.06, 0.07) 0.09 (0.09, 0.10) 0.14 (0.14, 0.14) 0.15 (0.14, 0.15)
Code15 Ribeiro MTLR age, sex 5 0.83 (0.83, 0.83) 0.83 (0.83, 0.83) 0.83 (0.83, 0.83) 0.83 (0.83, 0.83) 0.07 (0.07, 0.07) 0.10 (0.10, 0.10) 0.14 (0.14, 0.14) 0.15 (0.15, 0.15)
Code15 Ribeiro DeepHit age, sex 5 0.83 (0.83, 0.83) 0.83 (0.82, 0.83) 0.83 (0.83, 0.83) 0.17 (0.17, 0.18) 0.07 (0.06, 0.07) 0.09 (0.09, 0.10) 0.14 (0.13, 0.14) 0.02 (0.02, 0.02)
Code15 InceptionTime MTLR age, sex 5 0.83 (0.82, 0.83) 0.82 (0.82, 0.83) 0.83 (0.83, 0.83) 0.83 (0.83, 0.83) 0.07 (0.07, 0.07) 0.10 (0.10, 0.10) 0.15 (0.14, 0.15) 0.15 (0.15, 0.15)
Code15 InceptionTime DeepHit age, sex 5 0.82 (0.82, 0.82) 0.82 (0.82, 0.82) 0.83 (0.83, 0.83) 0.18 (0.17, 0.18) 0.07 (0.06, 0.07) 0.09 (0.09, 0.10) 0.14 (0.14, 0.14) 0.02 (0.02, 0.02)
Code15 InceptionTime DeepSurv age, sex 5 0.82 (0.82, 0.82) 0.82 (0.82, 0.82) 0.83 (0.82, 0.83) 0.83 (0.83, 0.83) 0.07 (0.06, 0.07) 0.10 (0.09, 0.10) 0.14 (0.14, 0.14) 0.15 (0.15, 0.15)
Code15 InceptionTime LH age, sex 5 0.82 (0.82, 0.83) 0.82 (0.82, 0.82) 0.83 (0.82, 0.83) 0.83 (0.82, 0.83) 0.07 (0.06, 0.07) 0.09 (0.09, 0.10) 0.14 (0.14, 0.15) 0.15 (0.14, 0.15)
Code15 Ribeiro Cla-5 age, sex 5 0.82 (0.82, 0.83) 0.82 (0.82, 0.83) 0.82 (0.82, 0.83) 0.83 (0.82, 0.83) 0.06 (0.06, 0.07) 0.09 (0.08, 0.09) 0.14 (0.13, 0.14) 0.15 (0.14, 0.15)
Code15 InceptionTime Cla-10 age, sex 5 0.82 (0.82, 0.82) 0.82 (0.82, 0.82) 0.83 (0.82, 0.83) 0.83 (0.82, 0.83) 0.06 (0.06, 0.06) 0.09 (0.09, 0.10) 0.14 (0.14, 0.14) 0.15 (0.15, 0.15)
Code15 Ribeiro Cla-10 age, sex 5 0.82 (0.81, 0.83) 0.82 (0.81, 0.82) 0.82 (0.82, 0.83) 0.82 (0.82, 0.83) 0.06 (0.06, 0.06) 0.09 (0.09, 0.09) 0.13 (0.13, 0.13) 0.14 (0.14, 0.14)
Code15 InceptionTime Cla-5 age, sex 5 0.82 (0.82, 0.82) 0.82 (0.82, 0.82) 0.82 (0.82, 0.82) 0.83 (0.82, 0.83) 0.06 (0.06, 0.06) 0.09 (0.09, 0.09) 0.14 (0.14, 0.14) 0.15 (0.14, 0.15)
Code15 Ribeiro Cla-1 age, sex 5 0.83 (0.82, 0.83) 0.82 (0.81, 0.82) 0.82 (0.81, 0.82) 0.82 (0.81, 0.82) 0.07 (0.07, 0.07) 0.09 (0.09, 0.10) 0.14 (0.14, 0.14) 0.14 (0.14, 0.14)
Code15 InceptionTime Cla-2 age, sex 5 0.82 (0.82, 0.82) 0.81 (0.81, 0.82) 0.82 (0.82, 0.82) 0.82 (0.82, 0.82) 0.06 (0.06, 0.06) 0.09 (0.09, 0.09) 0.14 (0.13, 0.14) 0.14 (0.14, 0.15)
Code15 Ribeiro Cla-2 age, sex 5 0.82 (0.82, 0.83) 0.81 (0.81, 0.82) 0.81 (0.81, 0.82) 0.81 (0.81, 0.82) 0.06 (0.06, 0.06) 0.08 (0.08, 0.09) 0.13 (0.13, 0.13) 0.13 (0.13, 0.13)
Code15 InceptionTime Cla-1 age, sex 5 0.81 (0.81, 0.82) 0.81 (0.81, 0.81) 0.81 (0.81, 0.82) 0.82 (0.81, 0.82) 0.06 (0.06, 0.06) 0.09 (0.09, 0.09) 0.13 (0.13, 0.14) 0.14 (0.14, 0.14)
Code15 FeedForward Cla-2 age, sex 3 0.78 (0.78, 0.78) 0.79 (0.79, 0.79) 0.80 (0.80, 0.80) 0.81 (0.81, 0.81) 0.04 (0.04, 0.04) 0.07 (0.07, 0.07) 0.11 (0.11, 0.11) 0.12 (0.12, 0.12)
Code15 Ribeiro DeepSurv none 5 0.82 (0.82, 0.82) 0.82 (0.81, 0.82) 0.81 (0.80, 0.81) 0.81 (0.80, 0.81) 0.07 (0.07, 0.07) 0.10 (0.10, 0.10) 0.14 (0.14, 0.14) 0.14 (0.14, 0.15)
Code15 Ribeiro LH none 5 0.82 (0.80, 0.83) 0.81 (0.79, 0.81) 0.80 (0.79, 0.81) 0.80 (0.79, 0.80) 0.07 (0.06, 0.08) 0.10 (0.09, 0.10) 0.14 (0.13, 0.14) 0.14 (0.13, 0.14)
Code15 Ribeiro MTLR none 5 0.82 (0.82, 0.83) 0.81 (0.80, 0.82) 0.80 (0.80, 0.81) 0.80 (0.80, 0.80) 0.07 (0.07, 0.08) 0.10 (0.10, 0.10) 0.14 (0.13, 0.14) 0.14 (0.14, 0.14)
Code15 Ribeiro DeepHit none 5 0.82 (0.78, 0.82) 0.81 (0.78, 0.81) 0.80 (0.77, 0.80) 0.20 (0.20, 0.23) 0.07 (0.05, 0.07) 0.09 (0.07, 0.10) 0.13 (0.10, 0.13) 0.02 (0.02, 0.02)
Code15 InceptionTime MTLR none 5 0.81 (0.81, 0.81) 0.80 (0.80, 0.80) 0.80 (0.80, 0.80) 0.79 (0.79, 0.80) 0.06 (0.06, 0.07) 0.09 (0.09, 0.09) 0.13 (0.13, 0.13) 0.13 (0.13, 0.13)
Code15 InceptionTime DeepSurv none 5 0.81 (0.80, 0.81) 0.80 (0.79, 0.80) 0.79 (0.79, 0.79) 0.80 (0.79, 0.80) 0.06 (0.06, 0.06) 0.08 (0.08, 0.09) 0.12 (0.12, 0.13) 0.13 (0.13, 0.14)
Code15 InceptionTime LH none 5 0.80 (0.79, 0.80) 0.79 (0.79, 0.80) 0.79 (0.79, 0.80) 0.79 (0.79, 0.80) 0.06 (0.06, 0.06) 0.09 (0.08, 0.09) 0.12 (0.12, 0.13) 0.13 (0.13, 0.13)
Code15 Ribeiro Cla-10 none 5 0.80 (0.80, 0.81) 0.80 (0.79, 0.80) 0.79 (0.79, 0.79) 0.79 (0.79, 0.80) 0.06 (0.06, 0.06) 0.08 (0.08, 0.09) 0.12 (0.12, 0.13) 0.13 (0.13, 0.13)
Code15 InceptionTime DeepHit none 5 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.79 (0.79, 0.79) 0.21 (0.21, 0.21) 0.06 (0.06, 0.06) 0.08 (0.08, 0.08) 0.12 (0.12, 0.12) 0.02 (0.02, 0.02)
Code15 Ribeiro Cla-5 none 5 0.80 (0.80, 0.81) 0.80 (0.79, 0.80) 0.79 (0.79, 0.79) 0.79 (0.79, 0.80) 0.06 (0.06, 0.06) 0.09 (0.08, 0.09) 0.12 (0.12, 0.12) 0.13 (0.13, 0.13)
Code15 InceptionTime Cla-10 none 5 0.79 (0.79, 0.80) 0.78 (0.78, 0.79) 0.79 (0.79, 0.79) 0.79 (0.79, 0.79) 0.06 (0.06, 0.06) 0.08 (0.08, 0.08) 0.12 (0.12, 0.12) 0.13 (0.13, 0.13)
Code15 InceptionTime Cla-5 none 5 0.79 (0.78, 0.80) 0.78 (0.78, 0.79) 0.79 (0.78, 0.79) 0.79 (0.78, 0.79) 0.05 (0.05, 0.06) 0.08 (0.08, 0.08) 0.12 (0.12, 0.12) 0.13 (0.13, 0.13)
Code15 Ribeiro Cla-2 none 5 0.79 (0.79, 0.79) 0.78 (0.78, 0.79) 0.78 (0.77, 0.78) 0.78 (0.77, 0.78) 0.06 (0.06, 0.06) 0.08 (0.08, 0.08) 0.12 (0.12, 0.12) 0.12 (0.12, 0.13)
Code15 Ribeiro Cla-1 none 5 0.79 (0.78, 0.79) 0.78 (0.77, 0.78) 0.77 (0.76, 0.77) 0.77 (0.76, 0.77) 0.06 (0.06, 0.06) 0.08 (0.08, 0.08) 0.11 (0.11, 0.12) 0.12 (0.11, 0.13)
Code15 InceptionTime Cla-2 none 5 0.78 (0.78, 0.79) 0.77 (0.77, 0.78) 0.77 (0.76, 0.78) 0.77 (0.76, 0.78) 0.06 (0.06, 0.06) 0.08 (0.08, 0.08) 0.12 (0.12, 0.12) 0.13 (0.12, 0.13)
Code15 InceptionTime Cla-1 none 5 0.75 (0.75, 0.76) 0.75 (0.74, 0.76) 0.75 (0.74, 0.75) 0.75 (0.75, 0.75) 0.05 (0.05, 0.06) 0.08 (0.07, 0.08) 0.11 (0.11, 0.11) 0.12 (0.12, 0.12)
MIMICIV Ribeiro LH age, sex 5 0.82 (0.81, 0.82) 0.81 (0.80, 0.81) 0.79 (0.79, 0.79) 0.78 (0.77, 0.78) 0.45 (0.44, 0.46) 0.49 (0.48, 0.49) 0.55 (0.54, 0.55) 0.55 (0.55, 0.55)
MIMICIV InceptionTime DeepHit age, sex 5 0.82 (0.82, 0.82) 0.81 (0.80, 0.81) 0.78 (0.78, 0.78) 0.75 (0.75, 0.76) 0.45 (0.45, 0.45) 0.49 (0.48, 0.49) 0.52 (0.52, 0.52) 0.49 (0.48, 0.50)
MIMICIV Ribeiro DeepHit age, sex 5 0.82 (0.81, 0.82) 0.80 (0.80, 0.81) 0.79 (0.78, 0.79) 0.76 (0.76, 0.76) 0.44 (0.44, 0.45) 0.48 (0.48, 0.48) 0.52 (0.51, 0.52) 0.50 (0.49, 0.51)
MIMICIV Ribeiro Cla-1 age, sex 5 0.82 (0.82, 0.82) 0.81 (0.81, 0.81) 0.79 (0.79, 0.79) 0.78 (0.78, 0.78) 0.45 (0.45, 0.45) 0.49 (0.49, 0.49) 0.55 (0.55, 0.55) 0.56 (0.56, 0.56)
MIMICIV InceptionTime Cla-1 age, sex 5 0.82 (0.81, 0.82) 0.81 (0.80, 0.81) 0.79 (0.78, 0.79) 0.77 (0.77, 0.77) 0.45 (0.45, 0.45) 0.49 (0.49, 0.49) 0.54 (0.54, 0.54) 0.55 (0.55, 0.56)
MIMICIV Ribeiro MTLR age, sex 5 0.81 (0.81, 0.82) 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.77 (0.77, 0.77) 0.44 (0.43, 0.45) 0.48 (0.47, 0.49) 0.54 (0.54, 0.54) 0.54 (0.54, 0.54)
MIMICIV InceptionTime MTLR age, sex 5 0.81 (0.81, 0.81) 0.80 (0.80, 0.80) 0.79 (0.78, 0.79) 0.77 (0.76, 0.77) 0.44 (0.44, 0.44) 0.48 (0.48, 0.49) 0.54 (0.53, 0.54) 0.53 (0.53, 0.53)
MIMICIV Ribeiro Cla-2 age, sex 5 0.82 (0.81, 0.82) 0.81 (0.80, 0.81) 0.79 (0.79, 0.79) 0.78 (0.77, 0.78) 0.44 (0.43, 0.44) 0.48 (0.47, 0.49) 0.54 (0.54, 0.55) 0.56 (0.55, 0.56)
MIMICIV InceptionTime LH age, sex 5 0.82 (0.81, 0.82) 0.81 (0.80, 0.81) 0.79 (0.79, 0.79) 0.77 (0.77, 0.77) 0.45 (0.45, 0.45) 0.49 (0.49, 0.49) 0.54 (0.53, 0.54) 0.53 (0.53, 0.54)
MIMICIV InceptionTime Cla-2 age, sex 5 0.81 (0.81, 0.81) 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.78 (0.77, 0.78) 0.44 (0.44, 0.44) 0.48 (0.48, 0.49) 0.54 (0.54, 0.54) 0.56 (0.56, 0.56)
MIMICIV Ribeiro DeepSurv age, sex 5 0.81 (0.81, 0.81) 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.78 (0.78, 0.78) 0.44 (0.43, 0.44) 0.48 (0.48, 0.48) 0.54 (0.54, 0.54) 0.56 (0.56, 0.56)
MIMICIV InceptionTime DeepSurv age, sex 5 0.81 (0.81, 0.81) 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.78 (0.78, 0.78) 0.43 (0.43, 0.44) 0.48 (0.48, 0.48) 0.54 (0.54, 0.55) 0.56 (0.56, 0.56)
MIMICIV Ribeiro Cla-5 age, sex 5 0.81 (0.80, 0.81) 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.78 (0.78, 0.78) 0.42 (0.42, 0.43) 0.47 (0.47, 0.48) 0.54 (0.54, 0.54) 0.56 (0.56, 0.56)
MIMICIV InceptionTime Cla-5 age, sex 5 0.80 (0.80, 0.81) 0.80 (0.79, 0.80) 0.79 (0.78, 0.79) 0.78 (0.78, 0.78) 0.42 (0.42, 0.42) 0.47 (0.46, 0.47) 0.54 (0.54, 0.54) 0.56 (0.56, 0.56)
MIMICIV Ribeiro Cla-10 age, sex 5 0.80 (0.79, 0.80) 0.79 (0.79, 0.80) 0.79 (0.78, 0.79) 0.78 (0.78, 0.78) 0.41 (0.40, 0.42) 0.46 (0.45, 0.47) 0.53 (0.53, 0.54) 0.56 (0.55, 0.56)
MIMICIV InceptionTime Cla-10 age, sex 5 0.79 (0.79, 0.80) 0.79 (0.79, 0.79) 0.79 (0.78, 0.79) 0.78 (0.78, 0.78) 0.41 (0.40, 0.41) 0.46 (0.46, 0.46) 0.54 (0.53, 0.54) 0.56 (0.56, 0.56)
MIMICIV FeedForward Cla-2 age, sex 3 0.68 (0.68, 0.68) 0.68 (0.68, 0.68) 0.70 (0.70, 0.70) 0.70 (0.70, 0.70) 0.26 (0.26, 0.26) 0.32 (0.32, 0.32) 0.42 (0.42, 0.42) 0.45 (0.45, 0.45)
MIMICIV Ribeiro Cla-1 age, sex, auto-ECG 3 0.82 (0.81, 0.82) 0.81 (0.80, 0.81) 0.79 (0.79, 0.79) 0.78 (0.77, 0.78) 0.45 (0.44, 0.45) 0.49 (0.49, 0.49) 0.54 (0.54, 0.55) 0.56 (0.55, 0.56)
MIMICIV Ribeiro DeepHit age, sex, auto-ECG 3 0.81 (0.81, 0.82) 0.80 (0.80, 0.81) 0.78 (0.78, 0.79) 0.75 (0.74, 0.75) 0.44 (0.43, 0.45) 0.48 (0.47, 0.48) 0.51 (0.50, 0.52) 0.47 (0.46, 0.48)
MIMICIV Ribeiro LH age, sex, auto-ECG 3 0.81 (0.81, 0.82) 0.81 (0.80, 0.81) 0.79 (0.79, 0.79) 0.77 (0.77, 0.77) 0.45 (0.44, 0.45) 0.49 (0.48, 0.49) 0.54 (0.54, 0.55) 0.54 (0.54, 0.55)
MIMICIV InceptionTime DeepHit age, sex, auto-ECG 3 0.81 (0.80, 0.81) 0.80 (0.79, 0.80) 0.78 (0.77, 0.78) 0.74 (0.74, 0.74) 0.44 (0.42, 0.44) 0.47 (0.46, 0.47) 0.51 (0.49, 0.51) 0.47 (0.46, 0.47)
MIMICIV InceptionTime LH age, sex, auto-ECG 3 0.81 (0.81, 0.81) 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.77 (0.77, 0.77) 0.44 (0.44, 0.45) 0.48 (0.48, 0.49) 0.53 (0.53, 0.54) 0.54 (0.53, 0.54)
MIMICIV InceptionTime Cla-2 age, sex, auto-ECG 3 0.81 (0.81, 0.81) 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.77 (0.77, 0.78) 0.44 (0.44, 0.44) 0.48 (0.48, 0.48) 0.54 (0.54, 0.54) 0.56 (0.55, 0.56)
MIMICIV Ribeiro DeepSurv age, sex, auto-ECG 3 0.81 (0.81, 0.81) 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.78 (0.78, 0.78) 0.44 (0.44, 0.44) 0.49 (0.48, 0.49) 0.54 (0.54, 0.54) 0.56 (0.56, 0.56)
MIMICIV InceptionTime Cla-1 age, sex, auto-ECG 3 0.81 (0.81, 0.81) 0.80 (0.80, 0.80) 0.78 (0.78, 0.78) 0.77 (0.77, 0.77) 0.44 (0.44, 0.44) 0.48 (0.48, 0.48) 0.54 (0.54, 0.54) 0.55 (0.55, 0.55)
MIMICIV Ribeiro Cla-2 age, sex, auto-ECG 3 0.81 (0.80, 0.81) 0.80 (0.79, 0.80) 0.79 (0.78, 0.79) 0.77 (0.77, 0.78) 0.44 (0.42, 0.44) 0.48 (0.46, 0.48) 0.54 (0.53, 0.54) 0.55 (0.54, 0.56)
MIMICIV InceptionTime MTLR age, sex, auto-ECG 3 0.81 (0.81, 0.81) 0.80 (0.79, 0.80) 0.79 (0.78, 0.79) 0.77 (0.76, 0.77) 0.44 (0.43, 0.44) 0.48 (0.47, 0.48) 0.54 (0.52, 0.54) 0.55 (0.52, 0.55)
MIMICIV InceptionTime Cla-5 age, sex, auto-ECG 3 0.80 (0.80, 0.81) 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.78 (0.78, 0.78) 0.42 (0.42, 0.42) 0.47 (0.47, 0.47) 0.54 (0.54, 0.54) 0.56 (0.56, 0.56)
MIMICIV Ribeiro Cla-5 age, sex, auto-ECG 3 0.81 (0.80, 0.81) 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.78 (0.78, 0.78) 0.42 (0.42, 0.42) 0.47 (0.47, 0.47) 0.54 (0.54, 0.54) 0.56 (0.56, 0.56)
MIMICIV Ribeiro MTLR age, sex, auto-ECG 3 0.81 (0.80, 0.81) 0.80 (0.79, 0.80) 0.79 (0.78, 0.79) 0.77 (0.77, 0.77) 0.43 (0.42, 0.43) 0.47 (0.47, 0.48) 0.53 (0.53, 0.54) 0.54 (0.54, 0.55)
MIMICIV InceptionTime DeepSurv age, sex, auto-ECG 3 0.80 (0.80, 0.80) 0.80 (0.80, 0.80) 0.78 (0.78, 0.79) 0.77 (0.77, 0.77) 0.43 (0.43, 0.43) 0.48 (0.47, 0.48) 0.54 (0.54, 0.54) 0.56 (0.55, 0.56)
MIMICIV Ribeiro Cla-10 age, sex, auto-ECG 3 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.79 (0.79, 0.79) 0.78 (0.78, 0.78) 0.41 (0.41, 0.41) 0.46 (0.46, 0.46) 0.53 (0.53, 0.53) 0.56 (0.56, 0.56)
MIMICIV InceptionTime Cla-10 age, sex, auto-ECG 3 0.80 (0.79, 0.80) 0.79 (0.79, 0.79) 0.79 (0.79, 0.79) 0.78 (0.78, 0.78) 0.41 (0.40, 0.41) 0.46 (0.45, 0.46) 0.54 (0.53, 0.54) 0.56 (0.55, 0.56)
MIMICIV XGB Cla-2 age, sex, auto-ECG 5 0.76 (0.76, 0.76) 0.76 (0.76, 0.76) 0.75 (0.75, 0.75) 0.74 (0.74, 0.74) 0.35 (0.35, 0.35) 0.40 (0.40, 0.40) 0.48 (0.48, 0.48) 0.50 (0.50, 0.50)
MIMICIV InceptionTime DeepHit none 5 0.80 (0.80, 0.81) 0.79 (0.79, 0.79) 0.76 (0.76, 0.76) 0.73 (0.72, 0.73) 0.43 (0.42, 0.43) 0.46 (0.45, 0.46) 0.48 (0.47, 0.49) 0.45 (0.43, 0.45)
MIMICIV Ribeiro MTLR none 5 0.81 (0.80, 0.81) 0.80 (0.79, 0.80) 0.78 (0.78, 0.78) 0.76 (0.76, 0.76) 0.43 (0.42, 0.43) 0.46 (0.46, 0.47) 0.52 (0.52, 0.53) 0.53 (0.52, 0.53)
MIMICIV Ribeiro DeepHit none 5 0.80 (0.80, 0.81) 0.79 (0.79, 0.79) 0.77 (0.77, 0.77) 0.74 (0.74, 0.74) 0.42 (0.42, 0.42) 0.46 (0.45, 0.46) 0.49 (0.49, 0.50) 0.47 (0.47, 0.48)
MIMICIV Ribeiro LH none 5 0.80 (0.80, 0.81) 0.79 (0.79, 0.79) 0.78 (0.77, 0.78) 0.76 (0.75, 0.76) 0.42 (0.41, 0.43) 0.47 (0.45, 0.47) 0.52 (0.51, 0.52) 0.52 (0.51, 0.53)
MIMICIV InceptionTime LH none 5 0.80 (0.80, 0.81) 0.79 (0.79, 0.80) 0.77 (0.77, 0.78) 0.75 (0.75, 0.75) 0.43 (0.42, 0.43) 0.47 (0.46, 0.47) 0.52 (0.51, 0.52) 0.51 (0.51, 0.51)
MIMICIV Ribeiro Cla-1 none 5 0.80 (0.80, 0.81) 0.79 (0.79, 0.80) 0.78 (0.77, 0.78) 0.77 (0.75, 0.77) 0.42 (0.41, 0.43) 0.47 (0.45, 0.47) 0.52 (0.51, 0.53) 0.54 (0.52, 0.54)
MIMICIV InceptionTime MTLR none 5 0.81 (0.80, 0.81) 0.79 (0.79, 0.79) 0.77 (0.77, 0.78) 0.76 (0.75, 0.76) 0.42 (0.42, 0.43) 0.47 (0.47, 0.47) 0.52 (0.52, 0.52) 0.52 (0.52, 0.53)
MIMICIV InceptionTime Cla-2 none 5 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.77 (0.77, 0.78) 0.76 (0.76, 0.76) 0.42 (0.42, 0.42) 0.47 (0.46, 0.47) 0.52 (0.52, 0.52) 0.54 (0.54, 0.54)
MIMICIV InceptionTime Cla-1 none 5 0.80 (0.80, 0.81) 0.79 (0.79, 0.79) 0.77 (0.77, 0.77) 0.75 (0.75, 0.76) 0.43 (0.42, 0.43) 0.46 (0.46, 0.47) 0.52 (0.52, 0.52) 0.53 (0.53, 0.53)
MIMICIV Ribeiro Cla-2 none 5 0.80 (0.79, 0.80) 0.79 (0.78, 0.79) 0.77 (0.77, 0.78) 0.76 (0.76, 0.77) 0.41 (0.40, 0.42) 0.46 (0.45, 0.47) 0.51 (0.51, 0.53) 0.53 (0.53, 0.54)
MIMICIV Ribeiro DeepSurv none 5 0.80 (0.80, 0.80) 0.79 (0.79, 0.80) 0.78 (0.78, 0.78) 0.77 (0.77, 0.77) 0.42 (0.42, 0.42) 0.47 (0.46, 0.47) 0.53 (0.52, 0.53) 0.54 (0.54, 0.54)
MIMICIV InceptionTime DeepSurv none 5 0.80 (0.80, 0.80) 0.79 (0.79, 0.79) 0.77 (0.77, 0.78) 0.76 (0.76, 0.76) 0.41 (0.41, 0.41) 0.46 (0.45, 0.46) 0.52 (0.52, 0.52) 0.53 (0.53, 0.54)
MIMICIV InceptionTime Cla-5 none 5 0.79 (0.79, 0.80) 0.79 (0.78, 0.79) 0.78 (0.78, 0.78) 0.77 (0.76, 0.77) 0.40 (0.40, 0.40) 0.45 (0.45, 0.45) 0.52 (0.52, 0.52) 0.54 (0.54, 0.54)
MIMICIV Ribeiro Cla-5 none 5 0.79 (0.79, 0.80) 0.79 (0.79, 0.79) 0.78 (0.78, 0.78) 0.77 (0.77, 0.77) 0.40 (0.40, 0.40) 0.45 (0.45, 0.45) 0.52 (0.51, 0.52) 0.54 (0.53, 0.54)
MIMICIV InceptionTime Cla-10 none 5 0.79 (0.79, 0.79) 0.78 (0.78, 0.78) 0.78 (0.77, 0.78) 0.77 (0.76, 0.77) 0.39 (0.38, 0.39) 0.44 (0.44, 0.44) 0.51 (0.51, 0.52) 0.54 (0.54, 0.54)
MIMICIV Ribeiro Cla-10 none 5 0.79 (0.78, 0.79) 0.78 (0.78, 0.78) 0.77 (0.77, 0.78) 0.77 (0.77, 0.77) 0.39 (0.38, 0.39) 0.44 (0.43, 0.44) 0.51 (0.51, 0.51) 0.53 (0.53, 0.53)
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Supplemental Table 7 

  

Supplemental Table 7. Percentage of ECGs associated with a mortality by year h. 

1-Yr 2-Yr 5-Yr 10-Yr Max-Yr
Code-15 1.2% 2.1% 3.4% 3.6% 3.6%
MIMIC-IV 14.8% 18.4% 24.5% 27.6% 27.8%

BCH 0.9% 1.5% 3.1% 4.8% 6.9%

% of ECGs associated with mortality by year h
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Supplemental Figure 1 
 

 

Supplemental Figure 1. Kaplan-Meier and population-averaged survival functions for the highest-
concordance-index non-demographic Code-15 (left) and MIMIC-IV (right) models. Bottom subplots 
show sample count at each time point. Plots show median and 95% confidence intervals per time 
point (100) over 100 bootstraps. Red values indicate the number of patients under observation. 
Note digerences in scale. 
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Supplemental Figure 2 

 

Supplemental Figure 2. Median heartbeats and SHAP analysis for a MIMIC Cla-5 ResNet [8]. Green: 
median heartbeat for 100 ECGs with lowest-risk-estimate (mean prediction probability: 0%). Red: 
median heartbeat for 100 ECGs with highest-risk-estimate (mean prediction probability: 69%). Blue 
shading: SHAP salience.  

The median high-risk waveforms show lower amplitude and QRS complexes, as well as 
flattened/inverted lateral precordial T waves indicating several pathological findings (delayed 
myocardial activation, possibly myocardial strain). The QRS complex is most salient, suggesting 
focus mostly on myocardial activation (heartbeat dynamics). High salience of the V2 lead indicates 
anteroseptal activation and aligns with analyses of left ventricular (LV) dysfunction. 
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Supplemental Figure 3 

 

Supplemental Figure 3. Median (IQR) model Concordance per patient subgroup. The title indicates 
the test set, the colors indicate the training set (Green – BCH, Blue – Code-15, Purle-MIMIC). All 
cases are Resnet LogisticHazard with ECG/Age/Sex. Code-15 and MIMIC-IV 0-20 not shown due to 
low event count. Models tend to perform better on their own test set, with one possible exception: 
Code-15 on BCH M40-60. 

 

 

 


